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Abstract

Directed laboratory evolution applies iterative rounds of mutation and selection to explore

the protein fitness landscape and provides rich information regarding the underlying relation-

ships between protein sequence, structure, and function. Laboratory evolution data consist

of protein sequences sampled from evolving populations over multiple generations and

this data type does not fit into established supervised and unsupervised machine learning

approaches. We develop a statistical learning framework that models the evolutionary

process and can infer the protein fitness landscape from multiple snapshots along an evolu-

tionary trajectory. We apply our modeling approach to dihydrofolate reductase (DHFR) labo-

ratory evolution data and the resulting landscape parameters capture important aspects of

DHFR structure and function. We use the resulting model to understand the structure of the

fitness landscape and find numerous examples of epistasis but an overall global peak that is

evolutionarily accessible from most starting sequences. Finally, we use the model to per-

form an in silico extrapolation of the DHFR laboratory evolution trajectory and computation-

ally design proteins from future evolutionary rounds.

Author summary

Laboratory evolution has revolutionized our understanding of protein structure, function,

and evolution, and has generated countless useful proteins broad applications in medi-

cine, biocatalysis, and biotechnology. These experiments explore protein sequence space

through iterative rounds of mutation and selection and can provide rich data of popula-

tions traversing the fitness landscape. In this paper, we present a statistical learning frame-

work that models the evolutionary process and can infer the structure of the underlying

protein fitness landscape from multiple snapshots along a laboratory evolution trajectory.

We generate a dihydrofolate reductase (DHFR) laboratory evolution data set and apply

our modeling approach to infer the landscape parameters. The estimated parameters pin-

point key residues that dictate DHFR structure and function. We use the resulting model
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to understand the local and global structure of the fitness landscape and to perform in sil-

ico directed evolution for protein engineering.

Introduction

The mapping from protein sequence to function forms a high-dimensional protein fitness

landscape. Knowledge of this landscape is important for understanding and modeling natural

evolution, diagnosing genetic diseases, and designing new proteins for applications in biotech-

nology, human health, and chemistry. This landscape is shaped by highly complex protein

conformations, dynamics, and biophysical/biochemical mechanisms, and is defined over

an astronomically large number of possible protein sequences. While the sequence-function

mapping is challenging to model from a physical perspective, approaches from statistics and

machine learning can be leveraged to infer the underlying landscape from sparsely sampled

experimental and evolutionary data [1–4].

The statistical approaches to model the protein fitness landscape are built around two com-

mon data types that provide either labeled or unlabeled data. Labeled protein data consist of a

set of amino acid sequences and how each of those sequences map to a particular protein prop-

erty of interest, such as thermostability, enzyme activity, or binding affinity. These sequence-

function data are commonly generated using protein mutagenesis libraries and medium- or

high-throughput assays to assign functional labels [5, 6]. Supervised learning approaches such

as linear regression or more sophisticated non-linear models can learn from labeled sequence-

function data to infer the mapping from sequence to function [7–10]. Unlabeled protein data

consist of natural protein sequences taken from genomic and metagenomic sequencing data-

bases. Unsupervised learning approaches can learn from this unlabeled protein data to infer

the fitness landscape [11–13]. Direct coupling analysis (DCA) is an important class of unsuper-

vised learning methods that learn residue coevolution patterns from multiple sequence align-

ments of related sequences [14, 15]. The DCA approach has been used to predict the three-

dimensional structures of proteins [16–18], model the effects of mutations [19], and design

new proteins [20].

Directed laboratory evolution applies iterative rounds of mutation and selection to explore

the protein fitness landscape [7]. As a population evolves it samples diverse regions of

sequence space and generates evolutionary trajectories that can be used to understand the

structure of the fitness landscape. Laboratory evolution data consist of protein sequences sam-

pled from evolving populations over multiple sequential generations. These data don’t natu-

rally fit into established supervised or unsupervised learning paradigms. Previous work has

treated laboratory evolution data similar to natural evolution data and performed unsuper-

vised DCA methods to infer landscape parameters [21, 22]. While these approaches were effec-

tive at determining contacting residues in the three-dimensional structure, they ignore the

sequential nature of laboratory evolution data and instead treat sequences from multiple gen-

erations as independent samples. [23] demonstrate a method to infer epistatic fitness land-

scapes using data from multiple rounds of deep mutational scanning experiments. Also, [24]

use genetic time series data to infer epistatic fitness landscapes. These methods model how the

time-dependent data are connected to each other. Observing how the evolutionary process

unfolds over time provides valuable information about the structure of the fitness landscape.

In this work, we develop a statistical learning framework to infer the protein fitness land-

scape from laboratory evolution data. We use population genetics principles to develop a

model of the underlying evolutionary process and build a likelihood function to estimate the

PLOS COMPUTATIONAL BIOLOGY Inferring fitness landscapes from evolution experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010956 March 1, 2023 2 / 21

awarded to PAR. The funding agency had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors declare no

competing financial interests.

https://doi.org/10.1371/journal.pcbi.1010956


landscape parameters from multiple rounds of evolution. We performed 15 rounds of labora-

tory evolution on the enzyme dihydrofolate reductase (DHFR) to generate a large and diverse

data set consisting of sequences sampled from multiple sequential generations. We applied

our learning method to infer the DHFR landscape and found the model parameters capture

important aspects of DHFR function and reveal landscape epistasis arising from interactions

between residues. We used the learned model to understand the global structure of the fitness

landscape by running thousands of evolution simulations and found all trajectories converged

to the same sequence, suggesting a single global optimum despite many examples of local epis-

tasis. Finally, we applied our model to start from where our experimental DHFR evolution left

off and continue the evolutionary process in silico. This procedure was used to extrapolate the

evolutionary trajectory and design new functional DHFRs that were beyond the training data.

Results

Laboratory evolution to explore the fitness landscape of dihydrofolate

reductase

Laboratory evolution applies iterative rounds of mutation and selection to explore the protein

fitness landscape. We performed a laboratory evolution experiment on murine dihydrofolate

reductase (mDHFR) to search the fitness landscape for diverse sequences encoding DHFR

activity (Fig 1). DHFR reduces dihydrofolate to tetrahydrofolate and plays an essential role in

purine biosynthesis and cell growth.

We employed a commonly used selection strategy that applies the antibiotic trimethoprim

to inhibit E. coli’s native DHFR and makes the cells reliant on heterologously expressed

mDHFR, which is resistant to trimethoprim. We mutagenized mDHFR using error-prone

PCR with a target mutation rate of four nucleotide substitutions per gene. We then trans-

formed this library into E. coli and performed a selection to identify DHFR variants capable of

supporting E. coli growth in the presence of trimethoprim. After this, we extracted plasmid

DNA from all surviving variants, remutagenized these variants with error-prone PCR,

repeated the selection process, and performed a total of 15 rounds of laboratory evolution. For

each round, we kept track of the total number of transformants and the fraction of functional

DHFR variants; the product of these two numbers gives an estimate of the population size (S1

Table). Over the 15 rounds of evolution the population had an average size of 300,000 DHFR

variants and never went less than 40,000. In contrast to an experiment like [25] which only

selects the fittest clone each round of evolution and ramps up the selection pressure as much

as possible, our low stringency selection and large population size create a neutral evolutionary

process that generates diverse sequences that maintain wild-type-like DHFR activity.

We performed DNA sequencing on directed evolution rounds 1–5 and 15 to obtain a sam-

ple of the evolutionary trajectory. From this sequencing data, we see the evolutionary process

generates a distribution of sequences with varying Hamming distance from wild-type mDHFR

and the evolving population increasingly drifts away from the starting sequence (Fig 1b and S1

Fig).

The round 15 population has an average of 11.9 amino acid substitutions, corresponding to

0.79 amino acid substitutions accumulated per round. We also observed the populations’ pair-

wise Hamming distance increased linearly over the course of evolution. The fact that the aver-

age distance from wild-type and the average pairwise distance both increased linearly with

each round indicates that most evolutionary trajectories are exploring independent directions

on the landscape. We also visualized how the DHFR sequences generated in our directed evo-

lution experiment fit into the larger protein family generated by natural evolution (Fig 1c).
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Fig 1. Experimental DHFR laboratory evolution (a) Laboratory evolution combines iterative rounds of random

mutagenesis and functional selection to evolve populations of molecules. We performed 15 rounds of evolution on

DHFR and sequenced the population at generations 1–5 and 15 to obtain snapshots along the evolution trajectory. (b)

Sequence statistics of the experimental evolving populations displayed increasing distance from wild-type DHFR and

increasing distance between sequences within a population, suggesting a diffusion-like spread into protein sequence

space. (c) Visualization of the round 15 population in the context of natural DHFR sequences. The laboratory

evolution experiment explored a small fraction of DHFR sequence space. Sequences were visualized using a two

dimensional latent space of a variational auto encoder (VAE) trained on natural DHFR sequences (Details of the VAE

are available in S2 Text). (d) The mutational statistics of sequences from the round 15 population displayed lower
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Our directed evolution experiment started to capture similar variation to some natural

sequences but only explored a small fraction of the sequence space spanned by nature.

We further analyzed the round 15 sequences to understand how mutations were distributed

across the primary sequence. The mutations generally are distributed across the protein

sequence but there is a lower observed mutation rate in the protein core and active site resi-

dues. We also observed the N20D mutation overtook the wild-type asparagine residue in the

round 15 population, possibly indicating positive selection for this mutation. Residue 20 is in

the active site region of mDHFR that binds nucleotide phosphates.

A statistical framework to learn from sequential rounds of experimental

evolution

Directed evolution provides a sampling of populations evolving on a protein fitness landscape.

We develop a statistical framework to infer the underlying landscape structure from these

experimental evolutionary trajectories. We posit that data from sequential rounds of evolution

provides inherently more information than data from a single round or data from multiple

rounds considered independently. Observing how the evolutionary process unfolds over mul-

tiple rounds allows us to make stronger inferences and extrapolate behavior. For a simplified

illustrative example, if we observe how the frequencies of amino acids change over each round,

we can extrapolate these trajectories to estimate where the evolutionary process will converge.

We build a generative model of the laboratory evolution process, parameterize the fitness land-

scape using a generalized Potts model, and infer the landscape parameters from sequencing

data from multiple rounds of evolution.

We model the dynamics of laboratory evolution as a Markov chain process where

sequences transition to other sequences according to their mutational accessibility and relative

fitness. We make a number of assumptions on the sequence transition mechanism between

rounds of evolution. First, we assume the mutation process happens independently at each

DNA position and the mutation probability at each position is known from the experiment.

Second, we assume that the transition mechanism is time-homogeneous, that is, both the fit-

ness values and the mutation probabilities do not change between rounds. Third, we assume

the number of experimental transformants is sufficiently large so that the distribution of

sequences at a given round depends only on their relative fitness level. Finally, we assume sim-

plified Markov chain dynamics, which assumes localized competitions between direct descen-

dants, well approximates the true dynamics (see the Markov chain approximation to infinite

population dynamics in S1 Text).

We parameterize the fitness landscape with a (generalized) Potts model that describes how

all amino acid residues and their pairwise interactions contribute to fitness. Potts models have

been used extensively to recover the interaction graph between residues of a protein and strong

interactions have been shown to correspond to long-range contacts in the 3D structure of a

protein [15, 17]. Directed evolution data consists of sequences sampled from multiple rounds

of evolution and the observed sequences at each round are random realizations from the

Markov model probability distribution. We can estimate the Potts model parameters by maxi-

mizing a statistical likelihood function to obtain the most likely model given the observed evo-

lution data. The details of our evolutionary model and parameter estimation methods are

given in the Methods section.

mutation rates at active site residues. The mutation N20D overtook the wild-type asparagine residue in the round 15

population.

https://doi.org/10.1371/journal.pcbi.1010956.g001
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Learned landscape parameters capture protein structure and function

We applied the statistical learning framework developed above to infer DHFR’s fitness land-

scape from our experimental laboratory evolution data. We estimated the Potts model’s

canonical parameters from evolution rounds 1–5 and 15, and used these parameters to get

information about the protein’s structure and function.

The learned Potts model reveals how individual amino acid substitutions affect wild-type

DHFR’s activity (Fig 2a). This learned mutation map clearly highlights the importance of the

enzyme’s key catalytic residues and displays expected mutational patterns residues with similar

Fig 2. Model parameters relate to DHFR structure and function. (a) A heatmap of the model’s predicted mutational effects across the 186 DHFR

sequence positions. The wild-type amino acid is colored in white. (b) The average mutational effect at each site mapped onto the DHFR structure (PDB

ID: 3K47). The largest magnitude mutations tend to occur in the protein core and the substrate binding site. (c) The interaction strength between all

pairs of sites in DHFR. The interaction strength is calculated as the Frobenius norm over the Potts model interaction coefficient all amino acid

combinations at each pair of sites. (d) The top ten long range interactions plotted on the DHFR structure (PDB ID: 3K47). Many of these interactions

occur through interactions through the substrate. (e) The top L/2 (93) interactions between residues plotted on a contact map showing residues with

heavy atoms closer than 5 Å and 8 Å. (f) A comparison of contact prediction for pseudo-likelihood DCA models trained on R15 data, R15 data

reweighted to account for evolutionary bias, or using our methods on the evolutionary trajectory. The horizontal line represents random chance and the

vertical line is drawn at the commonly used L/2 threshold.

https://doi.org/10.1371/journal.pcbi.1010956.g002

PLOS COMPUTATIONAL BIOLOGY Inferring fitness landscapes from evolution experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010956 March 1, 2023 6 / 21

https://doi.org/10.1371/journal.pcbi.1010956.g002
https://doi.org/10.1371/journal.pcbi.1010956


physiochemical properties. We compare this mutation map to a mutation map learned from

the natural DHFR sequences using DCA [19] and Bayesian VAE using EVE [26] (S2 Fig). The

EVE method aims to capture higher order interactions compared to DCA. The Spearman rank

based correlation between the our inferred mutation map and that from DCA was 0.54 and to

that from EVE was 0.62, showing that the fitness landscape learned from the evolution experi-

ment is similar to but not the same as that learned from the natural sequences. The G18A

amino acid substitution has the largest beneficial effect in the inferred model and is located in

a loop that interacts with NADPH. We mapped the average mutational effect magnitude onto

the three-dimensional DHFR structure to understand how the learned parameters relate to

structure (Fig 2b). We observed that mutations in the protein core tend to have larger effects

on activity, presumably because mutations at these sites disrupt the enzyme’s three-dimen-

sional structure.

The Potts model can also be used to understand landscape epistasis and interactions

between residues. We compute the fitness score for all single and double mutants of wild-type

and we identified thirteen examples of reciprocal sign epistasis in the landscape out of approxi-

mately 6 million possible amino acid and position pairs. One such example in the inferred

landscape occurs between K47A and R99E, where the individual mutations are beneficial indi-

vidually, but when combined result in a decrease in fitness. We observed 24695 examples of

sign epistasis in the landscape where one mutation has an opposite effect in the presence of

another mutation. We compute a residue-residue interaction score by calculating the Frobe-

nius norm Fij between all interaction parameters between a pair of residues (Fig 2c). The

inferred residue interactions capture many contacts from the enzyme’s three-dimensional

structure and also functional interactions in the enzyme active site. The top interaction is

between residues R71 and G117, which are not directly interacting in the 3D structure, but

form opposite ends of the nucleotide binding pocket (Fig 2d). Seven of the top ten residue-res-

idue interactions involve one of these key sites. The top 20 interactions are provided in S2

Table.

The Potts model interaction scores can be used to identify residue pairs that are contacting

in the three-dimensional protein structure. The residue pairs with the top L/2 (93) Frobenius

scores correspond to 10 structural contacts at a distance of less than 5 Å and 21 contacts at a

distance of less than 8 Å (Fig 2e). We compared our model’s contact prediction performance

to established methods for inferring contacts from evolutionary data, including the standard

DCA modeling procedure [19] and also a modified DCA model that weights sequences based

on their distance from wild-type to account for the evolutionary process [22] (Fig 2f and S3

Table). When trained on the round 15 data, neither of these methods were able to outperform

the random chance expectation (2.79%) when predicting the top L/2 (93) long range contacts

at a distance of less than 5 Å. In contrast, our model, which considered the evolutionary trajec-

tory, was able to correctly identify 10 out of the top L/2 contacts (10.7%), which is well above

random chance. Our model also outperforms the other two methods by recovering more

structural contacts with heavy atoms 5−8 Å and less than 8 Å (Fig 2f and S3 Table).

In silico evolutionary simulations to map the global structure of the fitness

landscape and extrapolate evolutionary trajectories

Our statistical method infers the underlying fitness landscape from experimental laboratory

evolution trajectories. This model can be used to run in silico simulations to understand the

landscape, evolutionary processes, and engineer new proteins.

We used our model to understand the global structure of the fitness landscape and the con-

vergence of adaptive evolutionary walks. We uniformly sampled 1600 random amino acid
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sequences (length 186) across all 20 amino acids to obtain broad sampling of the landscape.

For each of these sequences, we performed an adaptive walk by evaluating all single mutants,

selecting the most fit variant, and repeating this process until a local fitness peak was reached.

We found every single adaptive evolutionary trajectory converged to the same fitness peak and

the sequence at this fitness peak is 79 amino acid substitutions from wild-type DHFR. The fact

that adaptive walks starting from diverse regions of the landscape converge to the same peak

implies a Mt. Fuji-type fitness landscape with few local optima.

We also used the learned model to continue the experimental DHFR evolution process

and extrapolate the evolutionary trajectory to future generations (Fig 3b). We started the

Fig 3. Evolutionary simulations to understand the landscape structure. (a) We uniformly sampled random amino

acid sequences of length 186 and performed an adaptive walk until a fitness peak was reached. All adaptive walks

converged to the same fitness peak. 11 representative evolutionary trajectories are shown. (b) We continued our

laboratory DHFR evolution by continuing the evolutionary process in silico. We experimentally tested several DHFR

sequences along the evolutionary trajectory and found many were inactive enzymes.

https://doi.org/10.1371/journal.pcbi.1010956.g003

PLOS COMPUTATIONAL BIOLOGY Inferring fitness landscapes from evolution experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010956 March 1, 2023 8 / 21

https://doi.org/10.1371/journal.pcbi.1010956.g003
https://doi.org/10.1371/journal.pcbi.1010956


simulation with the most common amino acid sequence observed in the final round of the lab-

oratory evolution experiment. This starting sequence is 10 amino acid substitutions from wild-

type DHFR. We performed an adaptive walk by evaluating all single and double mutants,

selecting the most fit variant, and repeating this process until there were no further uphill

steps. The simulated evolutionary trajectory continued to move away from wild-type DHFR

and the round 15 starting sequence and converged to the same fitness peak as found in the

global landscape search described above.

We wanted to test whether the directed evolution trajectories could be extrapolated in
silico as an approach to engineer new proteins. We experimentally characterized ten DHFR

sequences along the trajectory from the round 15 sequence to the adaptive fitness peak (Fig

3b). The first five sequences were picked consecutively along this trajectory and the next five

sequences were picked by skipping every second sequence. We did not sample the entire tra-

jectory. We found the round 15 sequence was an active DHFR enzyme, a double mutant of the

round 15 sequence was also active, but all sequences beyond that were inactive and unable to

complement E. coli growth in the presence of trimethoprim (Fig 3b and S3 Fig).

Discussion

Directed laboratory evolution is a powerful approach to explore the protein fitness landscape.

Directed evolution generates data consisting of sequences sampled over multiple generations

and provides valuable clues about the underlying fitness landscape structure. Directed evolu-

tion data does not naturally fit into established supervised or unsupervised learning methods

because they do not consider the evolutionary data generation process. In this work, we devel-

oped a statistical learning framework to infer the protein fitness landscape from laboratory

evolution data. We built a generative model of the directed evolution process, parameterized

the fitness landscape using a generalized Potts model, and inferred the landscape parameters

from sequencing data from multiple rounds of evolution. We applied this learning approach

to a large and diverse dihydrofolate reductase (DHFR) directed evolution data set. The inferred

landscape model revealed numerous examples of epistasis arising from interactions between

residues, but an overall global fitness peak that is evolutionarily accessible from most starting

sequences. Finally, we explored the potential of the landscape model to extrapolate evolution-

ary trajectories for protein engineering.

Our laboratory evolution model made two important approximations for the sake of

computational tractability. Understanding when these approximations are valid or invalid can

help identify the scope and limitations of our method. The first approximation makes the

assumption the evolving population has an infinite population size, while in practice all labora-

tory evolution has a finite population size dictated by experimental constraints. Our actual

DHFR experimental population sizes are on the order of 105−106 and this number is largely

determined by the library transformation efficiency into E. coli. With larger population sizes,

this approximation gets more accurate.

The second approximation makes the assumption that the population evolves according

to simplified Markov chain dynamics (S1 Text) where competition only occurs between

sequences who share a direct ancestor. In our actual experiment all sequences are directly com-

peting in the growth selection regardless of their lineage (S4 Fig). The Markov chain dynamics

approximation is valid when competing sequences have similar fitness at each stage of the

experiment, which is likely if the fitness landscape near the initial wild-type sequence is flat

(i.e., most selected mutations are neutral) and the evolution experiment is carried out at lower

mutation rates. At low mutation rates the laboratory evolution experiment only explores the

wild-type sequence’s local neighborhood and all selected mutant sequences will have similar
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fitness due to the neutral landscape. In addition, the Markov chain dynamics are a better

approximation during the earlier rounds of evolution, while all evolving sequences are still

near the initial wild-type sequences.

Once we specified the evolution dynamics, we inferred fitness landscape parameters by

approximate moment matching. The approximate recursive formulas for the first and second

order moments between round r and r + 1 were derived based on a weak dependence assump-

tion between variables of interest with the remaining variables, which allow us to approximate

marginals at r + 1 round only based on local information in the protein residue graph. This

approximation is only exact if the residue graph factorizes, but we expect this provides a rea-

sonable approximation for most of the nodes and/or pair of nodes where the strength of inter-

action between them and the other variables is limited. We have three main regularization

hyperparameters in our inference procedure. The first two influence the magnitude of the

main effects and the pairwise effects parameters. These can be set in the same way as they

are for the DCA model [17]. The third hyperparameter is the regularization parameter that

infers the canonical parameters from the mean parameters. We observed the best performance

when it was set to be several times larger than the negative of the smallest eigenvalue in the

estimated covariance matrix. Of these three parameters, the results were most sensitive to the

last parameter.

Our inferred DHFR landscape parameters were able to identify contacting residues in the

three-dimensional protein structure and also numerous functionally coupled residues that

indirectly interact through the enzyme active site. Our trajectory learning approach showed

significant improvements over established contact prediction methods at the commonly used

L/2 threshold for residues with heavy atoms closer than 5 Å. This improvement is due to

modeling the evolutionary trajectory as well as including sequencing data from earlier rounds

of evolution. Several of top interactions (S2 Table) inferred are in residues that are not close in

the 3D structure but are in functional regions that interact with either the substrate or the

cofactor. These interactions are marked as false positives for contact prediction, however they

are likely epistatic interactions arising through ligand interactions or cofactor repositioning

[27]. 17 out of the top 20 interacting residue pairs in S2 Table involve a tryptophan residue.

Although this represents repeat interactions with just three residues (25W, 58W and 114W), it

is possible that this over-representation is from a bias in the model assumptions about the

error-prone PCR transition probabilities. However, it is known that tryptophan residues play

an important role in structure and stability of E. coli DHFR [28] and specifically Residue 25 is

highly conserved in the natural DHFR sequences and has a role in the function of the protein

[29]. So an alternative explanation is that these tryptophan residues show up in S1 Table

because of their importance.

Previous work has demonstrated the ability to identify residue contacts by applying DCA

to the final generation of laboratory evolution experiments [21, 22]. Stiffler et al. applied a

reweighing procedure to DCA to account for evolutionary bias and were able to get contact

recovery rates exceeding 50% for the top L/2 contacts. Previous laboratory experiments using

TEM1 β-lactamase [30] were not able to detect local epistatic interactions, however a larger

and more recent experiment [21] was able to identify epistatic interactions and detect some

contacts using DCA. It’s notable that these DCA methods were unable to reliably detect DHFR

contacts from our round 15 evolution data (S5 Fig). We applied standard DCA and the

reweighting DCA methods of [22] to our round 15 DHFR data and when predicting the top L/

2 contacts closer than 5 Å in the 3D structure, the percentage of correctly labeled contacts was

lower than random chance expectation. There are a number of factors that could contribute to

the differences in contact recovery across these data sets, including population sequence diver-

sity, the number of variants sequenced, or the evolution mutation rate. Stiffler et al. provide an
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analysis of down-sampled data sets for aminoglycoside acetyl-transferase (AAC6) [22], so we

can directly compare to our mDHFR data. At 105 sequences, they have an average pairwise dis-

tance of 10.9% and identify nearly 40% of the contacts. In contrast, with our mDHFR data

with 105 sequences, we have an average pairwise distance of 11.1%, but only recover 2.15% of

the contacts. Based on these findings, it seems the sequence diversity and data set size are not

contributing to differences in contact recovery. The two experiments do differ significantly in

their mutation rate, where AAC6 0.8% per round, while DHFR was evolved at 0.4% per round.

We hypothesize this varied mutation rate is resulting in different population structures, despite

having similar sizes and levels of diversity. Even for a fixed neutral landscape, finite popula-

tions following the quasispecies dynamics with different mutation rates will evolve different

levels of robustness [31] and this robustness is linked to epistatic interactions [32]. Simulations

of these types of laboratory evolution experiments using the simplified markov chain dynamics

is provided by [33] and these simulations do not consider the mutation rate as an important

parameter. However, since the laboratory evolution experiment likely follows the more com-

plicated quasispecies dynamics, it is possible that the mutation rate plays a more important

role.

We used the inferred model parameters to explore epistasis and the global structure of the

fitness landscape. We found many examples of additive mutations, approximately 0.4% of

mutations that interact through sign epistasis, and only thirteen examples of reciprocal sign

epistasis. This frequency of epistatic interactions is consistent with other studies [34, 35].

Despite the landscape epistasis, we found the estimated landscape structure had a overall global

fitness peak that was accessible by adaptive walks from most starting sequences. Similar fitness

landscape features have been observed in other proteins [35, 36], however, due to the various

approximations and limitations in the model’s ability to generalize outside its training data, we

caution against interpreting the model’s estimated landscape features as accurately existing in

the actual protein fitness landscape.

We used the inferred Potts model to run an in silico directed evolution experiment to design

new, previously unobserved DHFR variants. We found the model could design functional

DHFRs that were close to the training data regime, but further evolutionary extrapolation

resulted in nonfunctional enzymes. This result is consistent with other machine learning based

protein engineering studies that show decreased model accuracy while extrapolating away

from the training data [10, 37]. This result also shows that the prediction of a fitness peak at 79

mutations is not reliable. The model inaccuracy could be the result of insufficient or low-qual-

ity data, approximations we made in the evolutionary model, or computational challenges

with parameter estimation. A more accurate evolutionary model would consider finite popula-

tion sizes and competition between all sequences in a generation, which is referred to as the

finite quasispecies model [31, 38]. Another possibility to improve model accuracy would be to

use a simpler first order model without interactions so that we need to estimate fewer parame-

ters. Another approach to improve the reliability for protein engineering would be to run mul-

tiple independent evolution simulations and test a panel of diverse designs.

Our statistical landscape inference approach naturally complements recent advances in

continuous directed evolution [39–41]. These experimental methods combine population level

mutagenesis and selection in continuously-fed bioreactors to evolve populations without dis-

crete mutation/selection steps. The populations can be sampled and analyzed by next-genera-

tion DNA sequencing to observe how the population changes over time and traverses the

fitness landscape. Our learning method could infer the landscape from this sequential evolu-

tion data to understand protein structure, function, and evolution.

The relationships between protein sequence, structure, and function involve thousands of

exquisite molecular interactions that are dynamically coupled over space and time. Machine
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learning is revolutionizing our understanding of these relationships by dissecting the complex

inner workings of proteins with a scale and resolution beyond human comprehension. Future

advances in data-driven protein science will improve our ability to understand natural evolu-

tionary processes, predict genetic disease, and design new proteins for broad applications in

biotechnology.

Materials and methods

Overview of statistical method

We model the dynamics of laboratory evolution as a Markov chain process where sequences

transition to other sequences according to their mutational accessibility and relative fitness.

We consider the set of all possible codon sequences O of length L, where each sequence is

denoted by x≔ (x1, . . ., xL). Each xi corresponds to the codon that encodes the ith residue

position and each codon is from the set C ≔ fATT;ATC; . . .g of 61 codons that exclude the

stop codons. We let P(x) represent the fitness of each sequence x 2 O, i.e., the number of cop-

ies that a sequence makes of itself per unit time, and π(x) the corresponding prevalence based

on relative fitness, defined as π(x) =P(x)/∑u2OP(u).

Under the assumptions of (S1 Text), we have a transition probability given by

pðx! yÞ≔
gðx! yÞpðyÞ

P
z2Ogðx! zÞpðzÞ

: ð1Þ

where g(x! y) represents the probability sequence x mutating to sequence y in the absence of

selection. Each sequence x(n, r) from the round r is then a random sample from the marginal

probability p(r) after the rth step transition.

We parameterize the fitness landscape π with a (generalized) Potts model that describes

how all amino acid residues and their pairwise interactions contribute to fitness. We parame-

terize the fitness level π(x) = πθ(x) of sequence x with a Potts model with canonical parameter

set on the amino acids y≔ ½fhiðaÞgi2½L�;a2A; feijða; bÞgi;j2½L�;i<j;a;b2A� where

pyðxÞ ¼
1

ZðyÞ
exp

XL

i¼1

hiðACðxiÞÞ þ
XL

i¼1

X

i<j

eijðACðxiÞ;ACðxjÞÞ

( )

ð2Þ

AC(�) is the mapping from the set of codons C to the set to amino acids A ¼ ½A;V; . . .�, and Z
(θ) is the normalization constant so that the probabilities sum to 1. This model consists of qaL
main effect parameters (hi), where qa ≔ jAj ¼ 20, and q2

a
L
2

� �
(couplings) interaction effect

parameters (eij).
Directed evolution data consists of sequences sampled from multiple rounds of evolution.

These observed sequences x(n, r), n = 1, 2, . . ., nr at each round r are random realizations from

the probability distribution p(r)(�; θ). We can estimate the Potts model parameters θ by maxi-

mizing the following log-likelihood

log LikðyÞ ¼
X

r2R

Xnr

n¼1

log pðrÞðxðn;rÞ; yÞ: ð3Þ

where R denotes the set of experimental rounds at which sequencing data exists and p(x! y;
θ) in (1) is given by the Markov chain dynamics under the Potts model.

It is challenging to identify the model parameters θ that maximize this log-likelihood func-

tion (3). First, even though πθ forms a Markov Random Field (MRF), the distribution of p(r)

no longer factorizes with respect to the graph associated with the fitness distribution πθ. In
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particular, the conditional independence relationships which hold for πθ do not hold for p(r),

r = 1, 2, . . ., which prohibits applying techniques for parametric inference in Markov Random

Field settings. In addition, the large dimension of the state space precludes any exact tracing of

this Markov chain process. For instance, the dimension of the transition matrix is |O| × |O|,

and even computing a single element in the transition matrix for a given θ is computationally

infeasible due to the intractable sum in the denominator in (1) (as |O| = 61186).

We used an approximate moment matching method to overcome these computational

challenges. In particular, we first derived approximate relationships between the first and sec-

ond order marginals m
ðrÞ
i , m

ðrÞ
ij at each round r and the marginals μ under πθ (Sec. Approximate

relationships between marginals). Then we sought for m̂ which matches empirical and

expected 1st and 2nd order marginals and is also locally compatible (Sec. Inferring mean

parameters). Lastly, we used mean-field DCA [15] using estimated marginals as inputs to get

estimates of parameters θ of the Potts model (2) (see estimating canonical parameters in S1

Text).

We use the estimates of the canonical parameters θ to get information about the protein’s

structure and function. Each parameter eij(a, b) represents the interaction between amino acid

a at residue i and amino acid b at residue j. We compute an interaction score between residues

i and j using the canonical parameters e in the same manner as the DCA method [17]. The

parameter set e is over parameterized and so we first we convert to the zero-sum gauge and

then we compute the Frobenius norm

e0ijða; bÞ ¼ eijða; bÞ � eijð�; bÞ � eijða; �Þ þ eijð�; �Þ and Fij ¼ ke0ijk:

The Frobenius norm Fij is the interaction score between pairs of residues i and j. We only

look at long range interactions (i.e. between residues that differ by more than 5 positions in

the amino acid sequence).

A schematic diagram with an overview of our method is given in Fig 4. Although the frame-

work we have put together in this way to infer fitness landscapes does not appear in the litera-

ture, several components are from previous work. With the Potts model parameterization (2),

we can look at the simplified dynamics given by (1) as similar to the evolution dynamics given

in [33]. A generalization in our framework is that we allow for the possibility multiple simulta-

neous mutations where [33] only use a single mutation scheme for efficient implementation of

simulations. Also, the component on estimating canonical Potts model parameters follows the

fairly standard mean-field DCA [15] method. The components that deal with moment match-

ing (Sec. Approximate relationships between marginals) and (Sec. Inferring mean parameters)

should be considered new contributions.

Software code to reproduce this method are available at github.com/RomeroLab/dhfr_

neutral_evolution and archived at DOI 10.5281/zenodo.7622051.

Approximate relationships between marginals

We first approximate first and second order marginals m
ðrÞ
i ; m

ðrÞ
ij with a function of first and sec-

ond order marginals μ of πθ. Once the approximated moment vectors for all available rounds

are obtained, the mean vector μ for πθ is then estimated by matching the approximated

moment vectors with the empirical counts.

We let X(r) be a random variable following the probability distribution p(r). P(X(r) = x)≔
p(r)(x). For any codons c; d 2 C, first we define the first and second order marginals at round r
as m

ðrÞ
i ðcÞ≔ E½dðXðrÞi ; cÞ; y�, m

ðrÞ
ij ðc; dÞ≔ E½dðXðrÞi ; cÞdðX

ðrÞ
j ; dÞ; y� where δ(�, �) is the Kronecker

delta function such that δ(a, b) = 1 if a = b and 0 otherwise. We let the moment vector as a
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collection of these terms

mðrÞ ≔ ½fmðrÞi ðcÞgi2½L�;c2C; fm
ðrÞ
ij ðc; dÞgi;j2½L�;i<j;c;d2C�:

Similarly, we also define the first and second order marginals corresponding to the fitness

landscape πθ as miðcÞ≔ Ep½dðXi; cÞ; y�, mijðc; dÞ≔ Ep½dðXi; cÞdðXj; dÞ; y�, as well as the

moment vector μ for πθ as

m≔ ½fmiðcÞgi2½L�;c2C; fmijðc; dÞgi;j2½L�;i<j;c;d2C�:

If we have sequencing data at round r, we can calculate the individual and pairwise codon

frequencies observed for that round by summing over the data.

f ðrÞi ðcÞ ¼
1

nr

Xnr

n¼1

dðxðn;rÞi ; cÞ; f ðrÞij ðc; dÞ ¼
1

nr

Xnr

n¼1

dðxðn;rÞi ; cÞdðxðn;rÞj ; dÞ

We can put these terms together in a frequency vector f(r)

f ðrÞ ≔ ½ff ðrÞi ðcÞgi2½L�;c2Cff
ðrÞ
ij ðc; dÞgi;j2½L�;i<j;c;d2Cg�;

and when it can be calculated from the data it gives us an estimate of the moment vector μ(r)

for round r.
The fitness landscape itself is never observed but only the dynamics of the experiment over

the fitness landscape is observed. So, unlike the moment vectors for the rounds where we have

sequencing data and we calculate f (r) as an estimate of μ(r), we do not have an estimate for the

moment vector of the fitness landscape μ. To get around this, for each node i or a pair of nodes

(i, j), we approximate the prevalence of codon c at i and the prevalence of the codon pair (c, d)

Fig 4. An overview of the algorithm to infer fitness landscape parameters.

https://doi.org/10.1371/journal.pcbi.1010956.g004
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at i, j at r + 1 in terms of the moment vector μ(r) of round r and the moment vector of the fit-

ness landscape μ. In particular, assuming that the dependence between a set of nodes of inter-

est XS and the remaining variables XSc are limited for the approximation of m
ðrþ1Þ

S , we derive the

following recursive relationships in S1 Text:

m
ðrþ1Þ

i ðcÞ �
X

c02C

giðc0 ! cÞmiðcÞm
ðrÞ
i ðc0ÞP

c002C giðc0 ! c00Þmiðc00Þ

m
ðrþ1Þ

ij ðc; dÞ �
X

c0 ;d02C

giðc0 ! cÞgjðd0 ! dÞmijðc; dÞm
ðrÞ
ij ðc0; d0Þ

P
c00;d002C giðc0 ! c00Þgjðd0 ! d00Þmijðc00; d00Þ

:

ð4Þ

We note that once m
ð0Þ

i is specified, all mean vectors m
ðrÞ
i are subsequently specified as func-

tions of μ via the recursive relations in (4). Since at the start of the experiment, we have only

copies of the wild-type sequence present (denoted by w 2 O) and so its frequency is 1 and the

frequency of all other sequences is 0. Therefore, m
ð0Þ

i ðcÞ ¼ 1 and m
ð0Þ

ij ðc; dÞ ¼ 1 if wi = c and wj =

d and it is 0 in all other cases.

Now, we estimate μ by minimizing the aggregated log-loss between the expected first and

second-order frequencies m
ðrÞ
i , m

ðrÞ
ij (as functions of μ) and the observed first and second-order

frequencies f ðrÞi , f ðrÞij for all positions i, j 2 [L], i 6¼ j. In doing so, we reparametrize μ so that we

can optimize the objective function over amino-acid level parameters. We also enforce a local

consistency condition, and regularize parameters to prevent overfitting during optimization

(Sec. Inferring mean parameters).

Inferring mean parameters

Here, we describe the approximate moment-matching by minimizing the aggregated log-

losses between the expected and observed first and second-order frequencies. In other words,

we would like to solve the following objective function:

arg min
m2M\U

�
X

r2R

X

i2½L�

X

c2C

f ðrÞi ðcÞlog m
ðrÞ
i ðc; mÞ �

X

r2R

X

i; j 2 L½ �
i 6¼ j

X

c;d2C

f ðrÞij ðc; dÞ log m
ðrÞ
ij ðc; d; mÞ

8
>><

>>:

9
>>=

>>;

; ð5Þ

where M ≔ fm 2 Rd; 9 p such that Ep½�ðXÞ� ¼ mg and �ðxÞ≔ ½fdðxi; cÞgi2½L�;c2C;
fdðxi; cÞdðxj; dÞgi;j2½L�;i<j;c;d2C� is a sufficient statistic for πθ, and U ≔ fm 2 Rd

; miðcÞ ¼
miðc0Þ 8i 2 ½L�; 8c; c0 2 C such that ACðcÞ ¼ ACðc0Þ and mijðc; dÞ ¼ mijðc0; d0Þ 8i; j 2 ½L� 8c; c0;
d; d0 2 C such that ACðcÞ ¼ ACðc0Þ and ACðdÞ ¼ ACðd0Þg In words, the set M corresponds

to the set of the globally consistent mean vectors, i.e., all first-order and pairwise marginal

probabilities that can be realized by some distribution over {0, 1}d where d is the dimension of

the sufficient statistic f, and the set U corresponds to the set of mean vectors such that the

mean values only depend on the amino acid values of an input sequence.

First, to optimize the objective over amino-acid level parameters, we reparameterize the mean

parameters μ of the Potts model onO in terms of g≔ ½fgiðaÞgi2½L�;a2A; fgijða; a0Þgi;j2½L�;i<j;a;a02A� as
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follows:

miðc; gÞ ¼
niðACðcÞ; gÞP
c02CniðACðc0Þ; gÞ

and niða; gÞ ¼
expfgiðaÞÞgP
a02Aexpfgiða0Þg

mijðc; d; gÞ ¼
nijðACðcÞ;ACðdÞ; gÞ

P
c0;d02CnijðACðc0Þ;ACðd0Þ; gÞ

and nijða; b; gÞ ¼
expfgijða; bÞÞg

P
a0 ;b02Aexpfgijða0; b0Þg

:

ð6Þ

We also define νji(b, a; γ) = νij(a, b; γ) for j> i.
Although the set M can be characterized by a finite number of linear inequalities, the num-

ber of linear inequalities grows fast depending on the dimension d, and in general, it is known

to be extremely difficult to optimize even a linear objective over M unless the dimension d is

small [42]. We proceed by considering the relaxation of the optimization problem (5) by

enforcing normalization conditions
X

a2A

niðaÞ ¼ 1;
X

a;b2A

nijða; bÞ ¼ 1; 8i; j 2 ½L�; i 6¼ j ð7Þ

and local consistency conditions

niðaÞ ¼
X

b2A

nijða; bÞ; 8a 2 C; 8i; j 2 ½L�; i 6¼ j: ð8Þ

Note (7) is satisfied by the reparameterization (6). We add a following penalty term PðgÞ
with a Lagrange multiplier ρ to promote the local consistency conditions (8)

PðnÞ ¼
XL

i¼1

X

a2A

kniðaÞ �
1

L � 1

X

j6¼i

X

b2A

nijða; bÞk

Finally, to handle the high-dimensionality of γ, we add ℓ2-regularization terms Rmain and

Rint with hyper parameters λmain and λint

RmainðgÞ ¼
X

i2½L�

kgik
2 and RintðgÞ ¼ 2

X

i;j2½L�;i<j

kgijk
2
:

In summary, we solve the following optimization problem:

ĝ ¼ arg min
giðaÞ;gijða;bÞ2R

f �
X

r2R

X

i2½L�

X

c2C

f ðrÞi ðcÞ log m
ðrÞ
i ðc; gÞ �

X

r2R

X

i;j2½L�
i6¼j

X

c;d2C

f ðrÞij ðc; dÞ log m
ðrÞ
ij ðc; d; gÞ

þlmainRmainðgÞ þ lintRintðgÞ þ rPðgÞg:

ð9Þ

We initialize the parameters γ for optimization to be the log of the pairwise frequencies of

the last round that we have sequencing data for. A small pseudocount is added to the frequen-

cies so that this initialization procedure is defined for missing frequencies. We compute first

order derivatives of the objective using automatic differentiation. Also, we use a gradient

descent optimizer together with an early stopping rule.

After optimization, we get the individual and pairwise estimates ĝ and can compute an esti-

mate for the mean parameters n̂; m̂ using equation (6).

Statistical framework parameters

The statistical inference method was implemented in Python using PyTorch [43]. The optimi-

zation method used the Adam optimizer with a learning rate of 0.03 with other learning
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parameters set to default and trained for 300 steps. The regularization hyperparameters in (9)

were set to λmain = 10−3, λint = 10−4 and λreg = 50. The penalty term to ensure the main effect

parameters marginalized to the pairwise parameters was set to ρ = 105.

The exact mutation distribution in this experiment is not known as all rounds were

sequenced after growth selection, however, the statistical method seems fairly robust to choice

of the mutation distribution as the results look similar with mutation bias distributions from

other experiments done with a similar protocol (results not shown). We picked a mutation

bias distribution to model mutagenesis from the TaqDNA polymerase column of Table 2 in

[44], [45] and then scaled to match an average of 4 DNA mutations per round. The final muta-

tion distribution used in the statistical method is given in S4 Table.

mDHFR laboratory evolution

Our selection strain consists of the murine dihydrofolate reductase (mDHFR) gene cloned

into the pET22b plasmid and transformed into E. coli BL21(DE3). We performed error-prone

PCR using the reaction’s MnCl2 concentration to tune the mutation rate of Taq DNA poly-

merase [46]. We determined that a final concentration of 200 μM MnCl2 yielded 3.25±0.74

amino acid substitutions per gene. We performed 15 error-prone PCR cycles, treated the reac-

tion with DpnI overnight to remove template, purified the PCR product with a DNA spin

column (Zymo Research), cloned the insert back into pET-22b using circular polymerase

extension cloning (CPEC) [47], purified the CPEC reaction using a DNA spin column (Zymo

Research), and transformed the CPEC reaction into electrocompetent BL21(DE3) cells (Luci-

gen). Several dilutions of the transformation were plated to determine the total library size,

which was in the range of 105−106 colony forming units (CFUs). The remainder of the trans-

formation was used as input to a competitive growth selection in 100 mL of LB containing 100

μg/mL carbenicillin, 500 μM IPTG, and 5 μg/mL trimethoprim. We allowed these selection

cultures to grow shaking for 16 hours at 37˚C. Approximately 20 ODU of overnight culture

was used to harvest plasmid DNA via miniprep. This selected plasmid DNA population was

then used as a template for the next round of error-prone PCR. A portion of the post-selection

culture was also archived as 15% glycerol stocks and stored at -80˚C.

We determined the fraction of functional variants from each round of evolution by picking

colonies from each transformation plate into individual wells of a 96-well plate containing LB

broth, 100 μg/mL carbenicillin, 500 μM IPTG, and 5 μg/mL trimethoprim. We incubated

these plate cultures shaking for 16 hours at 37˚C, measured the OD600 of each well, and cate-

gorized DHFR variants as functional if their OD600 was greater than 0.5, otherwise they were

considered nonfunctional.

DNA sequencing of evolved populations. We performed next-generation DNA sequenc-

ing on several rounds of laboratory evolution. We analyzed rounds 1–5 using Illumina

sequencing and round 15 using Pacific Biosciences sequencing. For the Illumina libraries, we

used NdeI and SacI restriction enzymes to remove the DHFR insert from the plasmid, ligated

Illumina adaptor sequences to this insert, and submitted the samples to the UW-Madison Bio-

technology Center DNA Sequencing Core to run on an Illumina MiSeq instrument using the

2x300 v3 kit. Each sample had 2–5 million reads. For the PacBio sequencing, we removed the

DHFR insert with XbaI/PsiI and submitted the samples to the UW-Madison Biotechnology

Center DNA Sequencing Core for analysis on their Pacific Biosciences Sequel instrument. The

PacBio run returned over 105 reads. Raw sequencing data is available at the NCBI Sequence

Read Archive (SRA Accession ID PRJNA923701).

Sequence pre processing. For rounds 1–5, the Illumina sequencing data are processed

with steps similar to [22]. The forward and reverse reads are first stitched together using the
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FLASH program [48]. At the first filtering step, only sequences with a minimum length of 500

and a minimum quality score of 15 for every base were retained. At the second step, sequences

with a compound quality score of at least 10 were retained, implying a 90% probability of hav-

ing no read errors. For round 15, quality filtering was done to keep sequences with a minimum

length of 564 and a minimum quality score of 0.99. The remaining sequences were then

aligned to the reference sequence using bowtie2 [49].

Experimentally testing evolutionary designed DHFRs. We designed ten DHFR variants

using the inferred model to simulate an evolutionary process. The genes encoding these vari-

ants were synthesized by Twist Bioscience and cloned into the pET21(+) plasmid. We trans-

formed the plasmids into E. coli BL21(DE3) and performed growth measurements to assess

the DHFR variant’s activity. We performed the growth assays by first inoculating a 5 ml LB

starter culture containing 100 μg/mL carbenicillin and growing overnight shaking at 37˚C. We

then diluted this starter culture 100x into an LB culture containing 100 μg/mL carbenicillin,

500 μM IPTG, and 5 μg/mL trimethoprim and monitored growth by measuring the OD600 in

30 min. intervals over a 16.5 hour incubation period at 37˚C. These measurements were car-

ried out in triplicate. Inactive DHFR variants displayed no growth under these conditions,

while active variants displayed standard growth curves.
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