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SUMMARY

Microbial interactions are major drivers of microbial
community dynamics and functions but remain chal-
lenging to identify because of limitations in parallel
culturing and absolute abundance quantification of
community members across environments and repli-
cates. To this end,wedevelopedMicrobial Interaction
Network Inference in microdroplets (MINI-Drop).
Fluorescencemicroscopy coupled to computer vision
techniques were used to rapidly determine the
absolute abundance of each strain in hundreds to
thousands of droplets per condition. We showed
that MINI-Drop could accurately infer pairwise and
higher-order interactions in synthetic consortia. We
developed a stochastic model of community assem-
bly to provide insight into the heterogeneity in com-
munity states across droplets. Finally, we elucidated
the complex web of interactions linking antibiotics
and different species in a synthetic consortium. In
sum, we demonstrated a robust and generalizable
method to infer microbial interaction networks by
random encapsulation of sub-communities into mi-
crofluidic droplets.

INTRODUCTION

Microbial communities have a tremendous impact on diverse

environments ranging from the human body to the plant rhizo-

sphere (Berendsen et al., 2012; Clemente et al., 2012).

Microbe-microbe and environment-microbe interactions are

major determinants of microbial communities and microbiomes

(Cao et al., 2019; Venturelli et al., 2016). Deciphering interaction

networks in high-dimensional microbial communities is chal-

lenging because of the need to rapidly and accurately determine

the absolute abundance of each community member across

many sub-communities and environments (Cao et al., 2017; Har-

combe et al., 2016).

The population sizes of microbial consortia can range from less

than ten cells in mixed species biofilm aggregates to 1011 cells

mL�1 in the human colon (Connell et al., 2014; Sender et al.,
2016; Stoodley et al., 2001). Cellular growth history, the temporal

order of strain colonization, or the initial phaseofmicrobial compe-

tition can impact community assembly and lead to significant het-

erogeneity in community behaviors (von Bronk et al., 2017; Kong

et al., 2018; Vega and Gore, 2017; Venturelli et al., 2018; Zhou

et al., 2013). Our understanding of microbial consortia in small

populations is limited because of technical challenges in the

manipulation and analysis of small populations of cells (Connell

et al., 2014). Therefore, high-throughput methods that can rapidly

resolve microbial interaction networks across different initial com-

munity states, population sizes, and environmentswould enable a

better understanding of the key parameters shaping the structure

and functions of microbial communities.

Microbial interaction network inference requires accurate mea-

surements of the absolute abundance of each member of the

community (Cao et al., 2017; Fisher and Mehta, 2014). Recent

experimental efforts have used models trained on measurements

of 1–3member communities to predict community composition or

function of up to 12 members to varying degrees of accuracy

(Friedman et al., 2017; Guo and Boedicker, 2016; Kong et al.,

2018; Mounier et al., 2008; Venturelli et al., 2018). Absolute abun-

dance quantification of each member of a microbial community

has ranged from low-throughput selective plating to count colony

forming units (tens of samples per experiment) (Mounier et al.,

2008) to optical density multiplied by relative abundance based

on next-generation sequencing of samples generated through ro-

botic high-throughput culturing (hundreds of samples per experi-

ment) (Venturelli et al., 2018).

Encapsulation of microbial communities into microdroplets

has been used to study ecological and evolutionary processes

in microbial communities (Bachmann et al., 2013; Park et al.,

2011). Water-in-oil droplets can be generated at kilohertz (kHz)

rates using microfluidics, wherein cells from a mixed culture

are randomly encapsulated into droplets yielding distinct sub-

communities that can be studied in parallel (millions of samples

per experiment). Each droplet is a miniaturized compartment

that can be used to study interactions between community

members in small populations. Microfluidic technologies enable

the generation of well-controlled droplet environments of

�1% size variation (Guo et al., 2012). However, previous studies

have not fully leveraged the capabilities of this technology

to quantitatively investigate microbial communities. Further, we

lack a systematic method to rapidly infer microbial interactions

using droplet microfluidics in different environmental contexts.
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Figure 1. Overview and Characterization of Microbial Interaction Network Inference in Microdroplets (MINI-Drop)

(A) Overview schematic of the MINI-Drop method. A mixed microbial culture and oil are loaded into a droplet-forming microfluidic device. Cells are randomly

encapsulated into droplets based on a Poisson distribution. The droplets are incubated for a period of time to allow cell growth and division and then imaged using

fluorescent microscopy. A computer vision workflow rapidly identifies droplets and determines the number of each fluorescently labeled strain within each

droplet (Figure S1). Amicrobial interaction network is inferred based on the difference in themean number of cells in the absence and presence of a partner strain.

(B) Representative fluorescent microscopy images of droplets containing three bacterial strains labeled with YFP (ST Lac*), RFP (EC WT), or CFP (EC Met-)

(see Tables S9 and S10).

(C) Scatter plot of the dilution factor of the mixed culture versus the log2 transform of the mean number of cells per drop (cell count distribution shown in Fig-

ure S2A and analysis of mean fluorescence in Figure S2B). Each data point represents the mean of 400–600 droplets and lines denote linear regression fits to the

data excluding the highest dilution factor (indicated by empty circles to emphasize divergence from the linear trend). Red, yellow, and blue data points correspond

to EC WT, ST Lac*, and EC Met-, respectively.
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To address this challenge, we developed Microbial Interaction

Network Inference inmicrodroplets (MINI-Drop). To infermicrobial

interactions based on the absolute abundance of each strain

across hundreds to thousands of samples,wedeveloped an auto-

mated computational method coupled to fluorescence micro-

scopy to rapidly segment droplet images and accurately count

fluorescently labeled cells within each droplet. We tested the

capability of MINI-Drop to infer microbial interactions using a

microbial interaction toolbox composed of positive and negative

interactions mediated by distinct molecular mechanisms. Our

results demonstrate that MINI-Drop can decipher pairwise as

well as higher-order interactions by analyzing droplets containing

1–3 strains.We investigated how themolecular composition of the

environment shapes the ecological network of a three-member

consortium. A probabilistic model of cell growth modified by mi-

crobial interactions described the compositional heterogeneity

in community states across droplets, providing insight into the

forces shaping community assembly in small populations. Finally,

we investigated the complex interplay between combinations of

antibiotics and temperature on the assembly and species interac-

tions in a three-member consortium.

RESULTS

Microbial interactions represent the net impact (positive, nega-

tive, or negligible) of an organism on the growth of another

over a specified time interval (Cao et al., 2019). Microbial interac-
2 Cell Systems 9, 1–14, September 25, 2019
tions can be quantified by evaluating the difference in phenotype

(e.g., growth response or metabolic activity) of an organism in

the absence and presence of another strain (partner strain).

Encapsulation of cells in a microbial community into droplets

using techniques from droplet microfluidics enables parallel

culturing of many sub-communities (Figure 1A). To infer microbi-

al interactions we needed a scalable method to determine the

absolute abundance of each strain within each droplet. The

average fluorescence in each droplet may not be proportional

to the number of cells because of variability in cellular growth

rates, which dictates the rate of dilution of the fluorescent re-

porter (Figure S1A). In addition, absolute abundance information

is critical for accurate parameter estimation for computational

models (Cao et al., 2017; Fisher and Mehta, 2014). Therefore,

we developed an automated procedure using techniques from

computer vision to rapidly identify droplets (Figure S1B) and

count the number of fluorescently labeled cells in each droplet

(Figure S1C). The droplets were binned according to strain

composition (Figure S1D) and the cell counts were used to infer

the interaction type (positive, negative, or negligible), strength,

and directionality (see STAR Methods).

To evaluate the accuracy and dynamic range of the cell count-

ing method, CFP-labeled E. coli, RFP-labeled E. coli, and YFP-

labeled S. typhimurium were mixed in equal volumetric ratios

and serially diluted to generate a broad range of cell densities

(Figure 1B). Each dilution of the mixed culture was encapsulated

into 34 picoliter (pL) droplets (40-mm diameter), imaged using
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fluorescence microscopy, and analyzed using a computational

workflow (see STAR Methods). The number of cells of each fluo-

rescently labeled strain decreased linearly with each dilution,

with the exception of the highest density droplets (Figure 1C),

and the cell count distributions matched the expected Poisson

distribution (Figure S2A). These data demonstrate at least a

64-fold linear range of the cell counting method of each fluores-

cent reporter. In contrast, a similar analysis using the mean fluo-

rescence across the droplet images was inaccurate in the dilu-

tion range below 2�4, which corresponds to the regime of cell

counts for poorly growing strains (Figure S2B). Accurate quanti-

fication of low cell counts is important for estimating interaction

strengths. In a separate experiment described below involving

growth of fluorescently labeled strains in droplets (Table S1,

E6), we analyzed the relationship between droplet diameter

and the number of fluorescently labeled cells to determine if

the experimental noise in this parameter contributed to the vari-

ability in cell growth across droplets. Our results showed that an

�8-mM variation in droplet diameter did not correlate with the

number of cells labeled with CFP, YFP, or RFP, demonstrating

that this factor did not substantially contribute to differences in

cell counts among droplets (Figures S2C–S2E).

Investigating Microbial Interaction Networks in
Two-Member Consortia
To determine whether MINI-Drop could illuminate microbial in-

teractions in synthetic consortia, we investigated two-member

consortia engineered to display defined interactions. A microbial

interaction was defined as a statistically significant difference in

the average number of cells of a given strain in the presence of a

second strain (partner) compared to the absence of the partner

at a specific time point. To investigate positive interaction net-

works with MINI-Drop, we constructed a consortium composed

of an RFP-labeled E. coli methionine auxotroph (EC Met-) and a

GFP-labeledB. subtilis tryptophan auxotroph (BS Trp-, Table S1,

E1). In the absence of supplemented amino acids, the growth

of B. subtilis requires secretion of tryptophan from E. coli and

the growth of E. coli requires secretion of methionine from

B. subtilis, which together generates a bidirectional positive

interaction network (Figure 2A). The two species were mixed in

equal proportions based on OD600 measurements, encapsu-

lated into droplets such that each droplet had 1–2 cells on an

average according to a Poisson distribution, and the droplets

were incubated at 37�C for 18 h. The fluorescence microscopy

images and cell count distributions demonstrated that single-

species droplets exhibited a low number of total cells, whereas

droplets containing both species exhibited significantly higher

number of cells of each strain (Figures 2B and 2C). The inferred

interaction network exhibited bidirectional positive interactions,

mirroring the topology of the expected interaction network (Fig-

ures 2A and 2D) and demonstrating that MINI-Drop could

deduce positive interactions. In addition, both strains exhibited

poor growth in absence of the partner strain (denoted by

the size of the node in the network). The cell counts for BS

Trp- and EC Met- were positively correlated, suggesting that

the correlation structure in absolute abundance could be used

to identify bidirectional positive interactions (Figure S3A).

Next, we investigated whether MINI-Drop could decipher

negative interactions. A synthetic community was constructed
wherein a GFP-labeled E. coli strain (sender strain) was engi-

neered to express LuxI, a synthetase for the quorum-sensing

signal C6 acyl homoserine lactone (AHL). AHL diffuses into the

RFP-labeled E. coli strain (receiver strain), binds and activates

the receptor LuxR, which regulates the expression of the MazF

toxin (Figure 2E; Table S1, E2). High expression levels of the en-

doribonuclease MazF inhibits cell growth by inducing mRNA

decay (Venturelli et al., 2017), generating a strong negative inter-

action from the sender to the receiver strain. To characterize this

community using MINI-Drop, the sender and receiver strains

weremixed in equal proportions based on OD600, encapsulated

into droplets, and incubated at 37�C for 18 h. The fluorescent

microscopy images and cell count distributions showed that

the number of receiver cells was significantly lower in droplets

containing both the sender and receiver strains compared to

the average number of receiver cells in single-strain droplets

(Figures 2F and 2G). The average number of sender cells in drop-

lets containing the sender strain alone was 16.7-fold higher than

the average number of receiver cells in droplets containing only

the receiver strain, presumably due to leakiness ofmazF from the

pLux promoter in the absence of AHL. The inferred interaction

network exhibited a strong negative interaction from the sender

to the receiver and a weak negative interaction from the receiver

to the sender (Figure 2H). The node size of the receiver strain was

significantly smaller than the sender strain, illustrating the sub-

stantial difference in single-strain fitness in the absence of the

partner. The cell counts of the sender and receiver were nega-

tively correlated across droplets, suggesting that the correlation

structure of absolute abundance could be used to pinpoint bidi-

rectional negative interactions (Figure S3B).

The Molecular Composition of the Environment Shapes
a Microbial Interaction Network
Themolecular composition of the environment influences the en-

ergetic costs and benefits of microbial interactions in microbial

communities (Cao et al., 2019; Harcombe et al., 2016; Liu

et al., 2017). A key challenge is understanding how microbial

interaction networks are modulated by environmental parame-

ters. To investigate this question, we constructed a three-

member community consisting of two strains that interact via

bidirectional positive interactions and a third strain that pro-

motes growth of constituent members of the community but

does not receive a benefit from the community. Specifically,

the strains included RFP-labeled E. coli (EC WT), CFP-labeled

E. coli methionine auxotroph (EC Met-), and YFP-labeled

S. typhimurium (ST Lac*) (Figure 3A). This consortium was char-

acterized in four conditions that varied the carbon source

(lactose or glucose) and the presence or absence of supple-

mented methionine. In lactose minimal media, E. coli can

consume lactose and secrete carbon byproducts that can be

utilized as substrates by ST Lac* (Table S1, E3–E6) (Harcombe,

2010). In the absence of supplemented methionine, the growth

of EC Met- is dependent on methionine or intermediate(s) used

to produce methionine that are secreted by constituent commu-

nity members.

We used MINI-Drop to infer the pairwise microbial interaction

network by analyzing the number of cells of each community

member in single-strain and two-member droplets. In lactose

minimal media lacking supplemented methionine, the inferred
Cell Systems 9, 1–14, September 25, 2019 3



Figure 2. Investigating Positive and Negative Microbial Interaction Networks Using MINI-Drop

(A) Schematic of the expected network for a synthetic consortium composed of an RFP-labeled E. coli methionine auxotroph (EC Met-) and a GFP-labeled

B. subtilis tryptophan auxotroph (BS Trp-) (Table S1, E1).

(B) Fluorescence microscopy image of representative single-species (EC Met- or BS Trp-) or two-member droplets.

(C) Categorical scatter plot showing the number of BS Trp- or EC Met- cells in each droplet. The black horizontal line represents the mean and the error bars

denote bootstrapped 95% confidence intervals for the mean. Gray lines denote statistically significant difference in means based on the Mann-Whitney U test

(n = 87, p = 1.5e�6, left and n =3 72, p = 3.8e�26, right).

(D) The inferred interaction network for the ECMet-, BS Trp- consortium. The edge width is proportional to the log2 ratio of the average cell count in the presence

of a partner to the average cell count in single-strain droplets. Node size is proportional to the average cell count of each strain in single-strain droplets.

(E) Schematic of the expected network of an E. coli community that exhibits a strong unidirectional negative interaction. A GFP-labeled strain (sender) expresses

LuxI, a synthetase for the quorum-sensing signal C6 acyl homoserine lactone (AHL). AHL binds to the receptor LuxR in an RFP-labeled strain (receiver) and

activates the expression of a toxin MazF, generating a strong negative interaction (Table S1, E2).

(F) Fluorescence microscopy image of representative droplets containing the sender strain, receiver strain, or community.

(G) Categorical scatter plot of the number of sender or receiver cells in each droplet in the presence or absence of a partner. The black line represents the mean

and the error bars denote bootstrapped 95% confidence intervals for the mean. Gray lines denote statistically significant differences in the means (n = 1512,

p = 2.2e�4, left; n = 421, p = 3.8e�14, right).

(H) The inferred interaction network for the quorum sensing regulated toxin consortium.
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network mirrored the expected network, exhibiting bidirectional

positive interactions between ST Lac* and EC Met- and

unidirectional positive interactions from EC WT to ST Lac* or to

EC Met- (Figures 3A, 3E, and 3I; Table S1, E3, Table S2). In
4 Cell Systems 9, 1–14, September 25, 2019
lactose minimal media supplemented with methionine, the

positive outgoing interactions from EC WT or ST Lac* to EC

Met- were absent in the network and bidirectional negative inter-

actions linked EC Met- and EC WT (Figures 3B, 3F, and 3J;



Figure 3. The Molecular Composition of the Environment Shapes the Interaction Network of a Three-Member Consortium

(A) Schematic of the expected microbial interaction network of a three-member consortium consisting of RFP-labeled E. coli (EC WT), CFP-labeled E. coli

methionine auxotroph (EC Met-), and YFP-labeled S. Typhimurium deficient in lactose metabolism (ST Lac*) in lactose minimal media lacking supplemented

methionine (Table S1, E3). Secreted carbon byproducts (acetate) and methionine are represented by a triangle and rectangle, respectively. Node colors and

green arrows denote the type of fluorescent reporter and positive interactions, respectively.

(B) Schematic of the expected microbial interaction network in lactose minimal media supplemented with methionine (Table S1, E4).

(C) Schematic of the expected microbial interaction network in glucose minimal media lacking supplemented methionine (Table S1, E5).

(D) Schematic of the expected microbial interaction network in glucose minimal media supplemented with methionine (Table S1, E6).

(E) Cell count distributions in lactose minimal media for ECWT (top), ST Lac* (middle), or ECMet- (bottom). The black line represents the mean and the error bars

denote the bootstrapped 95% confidence intervals for the mean. The gray horizontal bars indicate a statistically significant difference (p < 0.05, Table S2) based

on the Mann-Whitney U test.

(F) Cell count distributions in lactose minimal media supplemented with methionine for EC WT (top), ST Lac* (middle), or EC Met- (bottom).

(G) Cell count distributions in glucose minimal media for EC WT (top), ST Lac* (middle), or EC Met- (bottom).

(legend continued on next page)
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Table S1, E4). In glucose minimal media lacking supplemented

methionine, the positive interactions from EC WT or EC Met- to

ST Lac* were absent and instead EC WT and ST Lac* were

coupled by bidirectional negative interactions (Figures 3C, 3G,

and 3K; Table S1, E5). In contrast to the expected network, bidi-

rectional negative interactions were inferred between all pairs of

strains in glucose minimal media supplemented with methionine

(Figures 3D, 3H, and 3L; Table S1, E6). The size of the EC WT

node in the network did not vary significantly across conditions,

indicating that the growth of ECWTwas not sensitive to environ-

mental changes (Figures 3I, 3J, 3K, and 3L). In contrast, the size

of the EC Met- or ST Lac* nodes was larger in the presence of

methionine and glucose, respectively. Across all environments,

the sign of the Pearson correlation coefficient clustered accord-

ing to the pairwise network topology, wherein positive or nega-

tive correlation coefficients were associated with positive or

negative interactions, respectively (Figures S3 and S4). These

data show that correlations in the absolute abundance of strains

across droplets can be used to classify two-member network

topologies.

Next, we investigated the coexistence of all three strains

across environmental conditions by examining three-member

droplets. The cooperative network (lactose minimal media lack-

ing methionine) displayed the highest strain coexistence, indi-

cating that positive interactions were critical features of the

network that promoted ecological stability (Figure S5A). In

contrast, the competitive network (glucose minimal media sup-

plemented with methionine) exhibited the lowest strain coexis-

tence across all conditions, suggesting that negative interactions

can destabilize the community. Networks with combinations of

positive and negative interactions displayed intermediate strain

coexistence. The distributions of cell counts in three-member

droplets exhibited a distinct clustering pattern in each condition,

demonstrating that the environmental context is a major driver of

community assembly (Figure S5B). In sum, our results demon-

strate that the microbial interaction network is highly context-

dependent and the network topology changes from cooperative

to competitive as a function of the molecular composition of the

environment.

Investigating Higher-Order Interactions Using MINI-Drop
Higher-order interactions occur when a pairwise interaction is

modified in the presence of a third community member (Bairey

et al., 2016; Billick and Case, 1994) and these interactions are

challenging to identify in microbial communities. We defined a

higher-order interaction as a difference in the presence and

sign (positive or negative) of an interaction in a three-member

community compared to the presence and sign of the interaction

in each two-member sub-community (Figure 4A). We tested

whether MINI-Drop could identify higher-order interactions by

analyzing the cell count distributions of each strain in three-
(H) Cell count distributions of EC WT (top), ST Lac* (middle), or EC Met- (bottom

(I) Inferred interaction network in lactose minimal media lacking supplemented m

count in the presence of a partner to the average cell count in the absence of the pa

isolation.

(J) Inferred network in lactose minimal media supplemented with methionine.

(K) Inferred interaction network in glucose minimal media lacking supplemented

(L) Inferred interaction network in glucose minimal media supplemented with me
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member droplets in addition to single-strain and two-member

droplets. To do so, we studied a community consisting of RFP-

labeled E. coli methionine auxotroph that is also deficient in

lactose metabolism (EC Met- Lac*, Table S1, E7), EC Met-

(CFP), and ST Lac*. In lactose minimal media lacking supple-

mented methionine, EC Met- and ST Lac* can secrete carbon

byproducts and metabolites to rescue the methionine auxot-

rophy and thus together enable the growth of EC Met- Lac*.

Our results showed that the number of EC Met- Lac* cells was

higher in the presence of both EC Met- and ST Lac* but not in

the presence of either single strain, demonstrating that MINI-

Drop could identify higher-order interactions (Figure 4B, p =

0.0012, Table S3). In the pairwise network, EC Met- (CFP) and

ST Lac* displayed bidirectional positive interactions, recapitu-

lating the expected network topology (Figure 3A, S5C, and

S5D). In addition, the cell counts of EC Met- and ST Lac* dis-

played a strong positive correlation consistent with a bidirec-

tional positive interaction topology (Figure S3D).

To investigate other higher-order interactions that were pre-

sent in our data, we analyzed droplets containing a three-mem-

ber consortium (EC WT, EC Met-, and ST Lac), two-member

sub-communities, and single strains across four different envi-

ronments (Figure 3; Table S1, E3–E6). Our results illuminated a

higher-order interaction in lactose minimal media (Table S1,

E3, Table S3), where EC WT was significantly inhibited in the

presence of both EC Met- and ST Lac*, while no negative inter-

action was observed in the pairwise interaction networks of

EC WT co-cultured with EC Met- or ST Lac* (Figures 3A, 4D,

and 4E). This higher-order interaction could be explained by

enhanced growth of the mutualistic pair EC Met- and ST Lac*,

which in turn negatively impacted the growth of EC WT.

Higher-order interactions occurred in one of twelve possible

cases (3 community members in 4 environments) in the EC

Met-, EC WT, ST Lac* consortium (Table S1, E3–E6, Table S3).

In sum, our results show that MINI-Drop can elucidate higher-

order interactions inmicrobial consortia and that higher-order in-

teractions in this consortium were infrequent across different

environmental conditions.

The sensitivity of the MINI-Drop method was evaluated based

on number of droplets (replicates) required to infer microbial in-

teractions of different strengths in experiments E1–E7 (Table S1).

Specifically, we analyzed the relationship between interaction

strength magnitude, number of replicates, and interaction signif-

icance (p < 0.05) (Figure S6). Our results showed that the signif-

icance of each interaction increased exponentially as a function

of the number of droplets (Figure S6A). The strength of the inter-

action was inversely related to the number of droplets required

for statistical significance of the interaction. For example, strong

interactions required as few as 15 replicates whereas weak inter-

actions required more than 50 replicates in order to be detected

(Figure S6B).
) in glucose minimal media supplemented with methionine.

ethionine. The edge width is proportional to the log2 ratio of the average cell

rtner. Node size is proportional to the average cell count of each strain grown in

methionine.

thionine.



Figure 4. Investigating Higher-Order Interactions Using MINI-Drop

(A) Schematic showing an example of a higher-order interaction. Droplets

containing two strains X and Z or Y and Z do not exhibit interactions. In three-

member droplets, a negative or positive interaction fromX andY to Z is present

and is defined as a higher-order interaction.

(B) Categorical scatter plots of the number of EC Met- Lac* cells in droplets

containing the single-strain EC Met- Lac* (self), pairs of strains including EC
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Discrete-Time Markov Model of Community Assembly
A stochastic population dynamic model was constructed to un-

derstand community assembly from a small number of cells and

the heterogeneity in community composition across droplets. In

small microbial populations, stochastic variation in intracellular

molecular concentrations can impact community assembly

and functions (Boedicker et al., 2009; Connell et al., 2014; Han-

sen et al., 2016). To model community assembly in small popu-

lations, microbial growth can be represented as a probabilistic

event, such that two communities seeded with the same initial

strain composition exhibit different steady-state community

compositions (Figure 5A) (Horowitz et al., 2010). We investigated

whether the model could be parameterized to recapitulate the

cell count distributions in two and three strain droplets.

In the model, communities are seeded according to a Poisson

distributionwith l= 1.5. Seeded communities that do not contain

both strains were discarded and resampled. At each time step,

strain i can undergo cell division, death, or remain static accord-

ing to the probabilities Pdiv; i, Pdeath;i, and Pstatic;i, respectively

(Figure 5B). The cell death state can also represent a non-

growing or dormant state for the duration of the experiment.

The probabilities Pdiv; i and Pstatic;i are a function of the number

of cells of each strain with parameters specific to each strain

and the probability Pdeath;i is a fixed parameter. Negative interac-

tions with self or non-self are represented by inverted sigmoidal

logistic functions, such that the probability of cell division is

inversely related to the cell number. Positive interactions are rep-

resented as sigmoidal logistic functions, such that the probability

of cell division increases as a function of the number of partner

cells (see STAR Methods).

We testedwhether thismodeling framework could recapitulate

the experimental cell count distributions based on the assump-

tion that the measurement time points represent model steady

states. Models were constructed using the positive or negative

interaction functions and model parameters were identified to

recapitulate the cell count distributions of each strain. We con-

structed a model for the EC WT, ST Lac* community grown in

glucose minimal media that exhibited a bidirectional negative

interaction network (Figure 5C, left). Our results showed three

clusters representing distinct community states exhibiting high

abundance of one strain (Figure 5C, center, clusters 1 and 4),
Met- Lac* and EC Met- or ST Lac* or all three strains (EC Met- Lac*, EC Met-,

and ST Lac*). Black horizontal bars denote the mean number of cells per

droplet and error bars represent the bootstrapped 95% confidence interval

for the mean. The horizontal bar (gray) represents a statistically significant

difference in means based on the Mann-Whitney U test (p = 1.2e�3, n = 703,

Table S3).

(C) Schematic showing the higher-order inferred network for the data shown in

panel (B). The line width represents the inferred strength of the higher-order

interaction. Node size is proportional to the average cell count of each strain

grown in isolation.

(D) Categorical scatter plots of the number of EC WT cells in droplets con-

taining the single-strain ECWT, two strains including ECWT and ST Lac* or EC

Met-, or all three strains (EC WT, ST Lac*, and EC Met-) in lactose minimal

media. The horizontal bar (gray) represents a statistically significant difference

in means based on the Mann-Whitney U test (p = 2.9e�10, n = 296, Table S3).

(E) Schematic showing a higher-order interaction inferred using the data

shown in (D). The line width represents the strength of the inferred higher-order

interaction. Node size is proportional to the average cell count of each strain

grown in isolation.
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Figure 5. Discrete-TimeMarkovModel of Cell GrowthModified byMicrobial Interactions Can Recapitulate Cell Count Distributions inMicro-

fluidic Droplets

(A) Schematic of variability in community assembly in small populations. Stochasticity in intracellular molecular concentrations can alter the strength of microbial

interactions, generating different community states (high blue cells, low yellow cells, or the reciprocal).

(B) Schematic of the discrete-time Markov model of cell growth modified by microbial interactions. At each time step, each cell can undergo cell division, cell

death, or remain static according to the probabilities Pdiv, Pdeath, or Pstatic, respectively.

(C) Inferred network topology using MINI-Drop (left) for the EC WT, ST Lac* consortium in glucose minimal media (Table S1, E5). Scatter plot of experimentally

measured cell counts (blue circles, n = 257) of EC WT and ST Lac* or model steady states (red circles, n = 200). This bidirectional negative interaction network

generated qualitatively different community compositions corresponding to (1) low and high ECWT and ST Lac*, respectively, (2) high ECWT and ST Lac*, (3) low EC

WT and ST Lac*, (4) high ECWT and low ST Lac*. Fluorescencemicroscopy images (right) of a representative droplet in each community state 1–4 are shown (right).

(D) Inferred network for the EC Met-, ST Lac* consortium (top) in lactose minimal media supplemented with methionine (Table S1, E4). Scatter plot of experi-

mentally measured cell counts (blue circles, n = 118) of EC Met- and ST Lac* or model steady states (red circles, n = 200).

(legend continued on next page)
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coexistence of both strains (Figure 5C, center, cluster 2), or low

cell counts of both strains (Figure 5C, center, cluster 3). Repre-

sentative images of droplets from each cluster showed signifi-

cant differences in community composition (Figure 5C, right). A

model of a bidirectional negative interaction network displaying

a strong and a weak negative interaction was able to recapitulate

the cell count distribution (Figure 5C, middle, Table S4).

We evaluated whether the model could recapitulate the cell

count distributions of networks with positive interactions.

Models constructed for the EC Met-, ST Lac* consortium in

two different environments exhibiting unidirectional or bidirec-

tional positive interactions (Table S1, E3–E4) could recapitulate

the cell count distributions (Figures 5D and 5E). Next, a model

was developed for the quorum sensing regulated toxin con-

sortium (Table S1, E2) that displayed a bidirectional negative

interaction network. A model of strong and weak bidirectional

negative interactions recapitulated the negative correlation in

the cell counts of the sender and receiver strains (Figure 5F).

Our results demonstrate that bidirectional negative interaction

networks can realize distinct community state distributions (Fig-

ures 5C and 5F). In the model, the number of partner cells

required to impact the probability of cell division dictates the

strength of an interaction (Figures 5F and S7A). The toxin medi-

ated negative interaction in the quorum sensing regulated toxin

consortium (Table S1, E2) exhibited a higher sensitivity to partner

cell number than the negative interaction from ST Lac* to ECWT

in glucose minimal media (Table S1, E5; Figure S7A). Therefore,

the recipients of the strong negative interactions displayed

different sensitivities to variations in donor cell number, providing

insight into the differences in the cell count distributions.

Next, we tested whether the model could capture the experi-

mental cell count distributions in two and three-member droplets

using a single parameter set. A model parameterized to the cell

count distributions of the EC WT, EC Met-, and ST Lac* con-

sortium in glucose minimal media lacking supplemented methi-

onine (Table S1, E5) recapitulated the experimental distributions

in two and three-member droplets (Figure S8). In sum, the model

was able to describe the cell count distributions for positive and

negative interactions mediated by distinct molecular mecha-

nisms, illustrating that a probabilistic growth model can explain

the heterogeneity in community states in small populations.

Investigating Pairwise and Higher-Order Drug
Interactions on Community Assembly
Antibiotic administration is a severe perturbation that alters com-

munity composition by reducing diversity in the human gut mi-

crobiome for a period of time before recovery (Palleja et al.,

2018; Shaw et al., 2019). Synergistic or antagonistic interactions

between different antibiotics can increase or reduce the effects

of each single antibiotic on bacterial growth and viability. Previ-

ous work has investigated drug interactions on single bacterial

strains but the effects of combinations of antibiotics on commu-

nity assembly and interactions remains largely unknown (Kulesa

et al., 2018; Tekin et al., 2018). Microbial interactions have been
(E) Inferred interaction network for the EC Met-, ST Lac* consortium in lactose m

counts (blue circles, n = 141) of EC Met- and ST Lac* or model steady states (re

(F) Inferred interaction network for the sender, receiver consortium (top, Table S1,

the sender and receiver strains or model steady states (red circles, n = 200).
shown to be major variables shaping antibiotic tolerance in

microbial communities (Adamowicz et al., 2018; Radlinski

et al., 2017). We investigated whether MINI-Drop could elucidate

the web of interactions linking antibiotic and species in a three-

member microbial consortium consisting of EC Met-, ST Lac*,

and RFP-labeledMethylobacterium extorquens (ME), a soil bac-

terium that can degrademethylamine to produce ammonia (Ada-

mowicz et al., 2018). The effectiveness of antibiotics can vary

with temperature (Cruz-Loya et al., 2019) and the growth of ME

is inhibited by elevated temperatures (Attwood and Harder,

1972). Therefore, we sought to determine the effect of tempera-

ture on the interaction network.

The community was encapsulated in a modified Hypho me-

dium (STAR Methods, Table S5) with all single and pairwise

combinations of carbenicillin (CRB), streptomycin (STR), and

erythromycin (ERY) at sub-lethal concentrations (Figures S9A–

S9C; Table S1, E8–E21). The droplets in each condition were

partitioned into two aliquots, incubated at 30�C or 37�C, and
then imaged following 36 or 18 h, respectively, to account for

slower growth kinetics at the lower incubation temperature (Fig-

ure 6A). We inferred the interaction networks in each condition

using the same analysis methods as the experiments described

above (Figures S10A and S10B). Because of the complexity of

the system, we further analyzed the data to quantify various

levels of interaction between combinations of antibiotics

and species. Pairwise interactions between species (species-

species) and each antibiotic and species (antibiotic-species)

were determined by evaluating the ratio of the mean number of

cells in the presence of a partner strain or antibiotic to the

absence of these factors (Tables S6–S8; Figures 6B and 6C).

Higher-order interactions were inferred by evaluating how anti-

biotic-species interactions changed in the presence of a second

antibiotic or species (species-antibiotic-species or antibiotic-

antibiotic-species) (Tables S6–S8; Figures 6B and 6C).

Our results showed that ST Lac* provided a substantial growth

benefit to EC Met- at both temperatures, presumably due to

cross-feeding of methionine or missing intermediate(s) required

to produce methionine. Notably, this positive interaction was

preserved in the presence of ERY, eliminated with the addition

of either STR or CRB, and maintained in the presence of both

ERY and CRB (Figures S10A and S10B). Weak negative interac-

tions were present in most cases where substantial growth of

both species was detected, suggesting that growth correlated

activities such as microbial competition or production of toxic

compounds was a prevalent mode of interaction. At 30�C, the
outgoing interaction from EC Met- to ME displayed a sign

change from negative to positive with the addition of STR,

demonstrating that the action of STR induced a growth benefit

of ME in the presence of EC Met- (Figure S10A).

For antibiotic-microbe interactions, STR primarily inhibited the

growth of EC Met- without substantially suppressing the growth

of ME or ST Lac* at both temperatures, mirroring the differences

in susceptibility to STR in a larger population in microtiter plates

(Figure S9C). ERY weakly inhibited the growth of all three strains
inimal media (top, Table S1, E3). Scatter plot of experimentally measured cell

d circles, n = 200).

E2). Scatter plot of experimentally measured cell counts (blue circles, n = 93) of
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Figure 6. Combinatorial Effects of Antibiotics on Community Interactions and Assembly

(A) Overview schematic of the experimental design. A three-member community containing ST Lac*, ME, and EC Met- in modified Hypho medium was

encapsulated with no antibiotics and with each individual and pairwise combination of carbenicillin (CRB), erythromycin (ERY), and streptomycin (STR). Droplets

were incubated at 30�C or 37�C prior to imaging and interaction network inference.

(B) Inferred interaction network after incubation at 30�C for 36 h. The edge width is proportional to the log2 ratio of the average cell count between two conditions

of interest (Tables S6–S8). Only those edges with p < 0.05 and log2 ratio magnitude greater than 0.5 are shown (all interactions are listed in Tables S7 and S8).

Node size is proportional to the mean number of cells in single-strain droplets in the absence of antibiotics. The arrows have a sign modifier based on the level of

interaction as summarized in Table S6. For example, species-antibiotic-species interactions with a value greater than 1 are visualized as an inhibitory edge

pointing to an inhibitory edge, with the net result being an increase in growth of the target species. This network representation was chosen such that each edge

represents the ratio between two populations of droplets differing only by the presence of one variable (i.e., species or antibiotic) and is not meant to imply

mechanisms of interaction.

(C) Inferred interaction network after incubation at 37�C for 18 h.

Please cite this article in press as: Hsu et al., Microbial Interaction Network Inference in Microfluidic Droplets, Cell Systems (2019), https://doi.org/
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at 30�C, consistent with the microtiter plate experiment that

showed reduced growth of all species in the presence of ERY

(Figure S9B). CRB strongly inhibited the growth of ST Lac* in

both temperatures, but only substantially impacted the growth

of EC Met- at 37�C, indicating that temperature is a major vari-

able influencing antibiotic susceptibility across different species

(Figures 6B and 6C).

Next, we examined how a second species impacted the inter-

action between an antibiotic and each community member (spe-

cies-antibiotic-species interactions). The growth of EC Met- in

the presence of ERY and ST Lac* was enhanced at both temper-

atures, suggesting that EC Met- was still able to benefit from the

presence of ST Lac* despite inhibition of both strains by ERY

(Figures 6B and 6C, S10A, and S10B). Interestingly, this positive
10 Cell Systems 9, 1–14, September 25, 2019
interaction was not observed in the presence of CRB but was

observed in the presence of both ERY and CRB (Figures S10A

and S10B). The growth of ST Lac* in ERY was reduced in the

presence of ME at 30�C or in the presence of EC Met- at 37�C,
indicating that temperature is a critical parameter shapingmicro-

bial interaction networks (Figures 6B and 6C). In particular, while

inhibition of ST Lac* by ME at 30�C was maintained in the pres-

ence of ERY and was not detected in the presence of CRB, inhi-

bition was detected in the presence of both CRB and ERY.

We examined how combinations of antibiotics influence the

effects of single antibiotics on the growth of each species (anti-

biotic-antibiotic-species interactions). STR enhanced the growth

of ME in the presence of ERY compared to ERY alone at 30�C,
representing an antagonistic relationship between STR and
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ERY (Figure 6B). In contrast, the growth inhibition of ST Lac* was

further enhanced in the presence of both STR and CRB relative

to CRB alone at 37�C, demonstrating a synergistic relationship

between STR and CRB (Figure 6C). Antagonism between STR

and ERY and synergy between STR and ampicillin (same mech-

anism of action as CRB) have been previously reported for

E. coli, but here we observe similar antibiotic-antibiotic interac-

tions in different bacterial species (Yeh et al., 2006).

The antibiotic-species and antibiotic-antibiotic-species inter-

actions were inferred by comparing cell counts from different

populations of droplets. As such, differences in environmental

conditions could alter cell morphology or fluorescence and

potentially contribute to variation in cell counts. For example,

the cell morphology of ST Lac* and to a lesser extent EC Met-

in droplets containing CRB were altered compared to the

absence of CRB, which could impact the accuracy of the cell

counting method (Figure S9F) (Rolinson, 1980). Therefore, the

magnitudes of these interactions should be considered as

approximate. However, these data highlight a benefit of MINI-

Drop, where a cell morphology change was detected in the pres-

ence of CRB that would have been overlooked by population-

level measurements such as bulk fluorescence, selective plating,

or sequencing-based methods.

To further understand how antibiotics impact community as-

sembly, we evaluated the effects of antibiotics on species coex-

istence in three-member droplets (Figures S9D and S9E). The

presence of antibiotics globally reduced coexistence relative to

the no antibiotic condition. In 30�C CRB conditions, coexistence

was almost entirely eliminated because of its extreme impact on

the growth of ST Lac* (Figure 6B). Coexistence was lower in the

presence of STR-CRB at 37�C relative to either STR or CRB

alone, likely due to the synergistic impact of these antibiotics

on growth inhibition of ST Lac* (Figure 6C). Additionally, higher

levels of coexistence were observed in all conditions containing

CRB at 37�C compared to 30�C, potentially attributed to

reduced inhibition of ST Lac* by CRB at 37�C.

DISCUSSION

We showed that MINI-Drop can rapidly infer pairwise as well as

higher-order microbial interactions in two and three-member

consortia in different environmental conditions compared to

traditional methods to study microbial interaction networks

(Friedman et al., 2017; Venturelli et al., 2018). While all of the ex-

amples in this work involved bacteria expressing fluorescent

proteins, orthogonal fluorescent labeling of the bacterial outer

membranes and proteins via click chemistry before encapsula-

tion in droplets could be used to apply MINI-Drop to organisms

that are not genetically tractable (Geva-Zatorsky et al., 2015; Hu-

dak et al., 2017). In addition, droplets could be injected with fluo-

rescent stains for metabolic activity, cell damage, nucleic acid

content, or reagents for biochemical assays to potentially distin-

guish different species and characterize single-cell phenotypes

in a microbial community (Maurice and Turnbaugh, 2013). This

method can be scaled to quantify interactions in higher-dimen-

sional (>3 members) communities using compatible fluorescent

labels or combinatorial fluorescent imaging of multiple reporters

within the same cell. While the requirement for orthogonal

fluorescent labels does limit the scalability of this approach,
MINI-Drop provides the foundation for the development of imag-

ing-independent techniques that could be applied to higher

complexity communities.

In MINI-Drop, a single experiment generates hundreds to

thousands of replicates of many sub-communities. The mean

number of cells per drop following cell encapsulation can be

manipulated to investigate the contribution of initial cell density

tomicrobial interactions or increase the proportion ofmulti-strain

droplets for interrogation of higher-order interactions. In the

three-member consortium (Table S1, E3–E6), strains with higher

fitness in the absence of a partner tended to display outgoing

negative interactions, whereas strains with lower fitness had

the propensity for incoming positive interactions. Therefore,

the competitive ability of the strain was an indicator of outgoing

negative interactions, suggesting that the unexpected negative

interactions (Figure 3L) could be attributed to growth-coupled

activities such as resource competition and/or metabolic waste

by-product secretion. Future work could link MINI-Drop to fluo-

rescent dye droplet barcoding to elucidate microbial interaction

networks across a large number of environmental conditions in

parallel (Hori et al., 2017; Kulesa et al., 2018; Miller et al.,

2011). Using this droplet barcoding approach, interaction mech-

anisms could be inferred by screening candidate interaction-

mediating molecules to identify conditions in which interactions

are eliminated.

Previous methods of microbial interaction inference using

modeling frameworks such as the generalized Lotka-Volterra

(gLV) model are constrained by mathematical relationships (Mo-

meni et al., 2017). For example, a gLV model of strong bidirec-

tional positive interactions (mutualism) tends to be unstable,

leading to potential underrepresentation of bidirectional positive

interactions. Further, it is challenging to pinpoint if the failure of

a pairwise gLV model to accurately fit experimental data is

attributed to the presence of higher-order interactions or to un-

modeled dynamics such as metabolites mediating the interac-

tions. In contrast, MINI-Drop is not constrained to a defined

mathematical framework and thus can readily identify higher-or-

der interactions in the networks. We showed that MINI-Drop

accurately inferred diverse interaction topologies including

unidirectional positive, bidirectional positive, or bidirectional

negative networks. In addition to deciphering engineered inter-

actions, MINI-Drop illuminated pairwise interactions as well as

higher-order interactions that were not designed.

The throughput of MINI-Drop was enabled by coupling two

automated and scalable technologies, droplet microfluidics,

and computational image analysis. The large number of sub-

community replicates produced by MINI-Drop allows investiga-

tion of the contribution of initial conditions to the heterogeneity in

community assembly in small populations. A probabilistic anal-

ysis of the distribution of community states provides insight

into the stochastic forces shaping community behaviors. For

example, we observed that bidirectional positive networks dis-

played frequent co-occurrence (Figures 5E, S3, and S4),

whereas a bidirectional negative network can realize a set

of distinct community states (Figures 5C and 5E). The correla-

tion structure between taxa in a microbial community is

frequently used to identify potential interactions based on

co-occurrence or co-exclusion patterns (Faust et al., 2012).

Our results suggest that correlation structure may not illuminate
Cell Systems 9, 1–14, September 25, 2019 11
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negative interactions due to the potential for multiple community

states. However, themapping between correlation structure and

interaction networks could differ at different population sizes and

should be investigated.

Our stochastic growthmodel can recapitulate the heterogeneity

in community states in two- and three-member consortia (Figures

5 and S8). This demonstrates that a simple probabilistic represen-

tation of cell growth, death, and microbial interactions can give

rise tomultiple community steady states from the same initial con-

ditions. Our modeling framework could be used to predict the

probability of strain growth as a function of the initial strain propor-

tions and cell density. These parameters could be manipulated to

maximize the likelihood of community member coexistence in

multi-species consortia. Specific strains of bacteria have been

shown to display positive density-dependent growth behavior

referred to as an Allee effect wherein the per cell growth rate of

the population is reduced in small populations (Kaul et al.,

2016). We show that the model can exhibit an Allee effect and

could be used to investigate key parameters influencing positive

density-dependent growth behaviors in microbial populations

(Figures S7B–S7D). This phenomenon is unlikely to influence the

heterogeneity in community states in our experiments because

of the narrow range of initial cell counts and absence of cell adhe-

sion. The Allee effect may play a larger role in community assem-

bly for strains that display cell adhesion since the initial number of

cells in each droplet could vary over a larger range.

We usedMINI-Drop to elucidate a complex network of interac-

tions between three bacterial species exposed to different com-

binations of antibiotics and varying temperature. This method

demonstrated that antibiotics can significantly modify the spe-

cies-species interaction network and species-species interac-

tions in turn can modulate antibiotic tolerance (Figures 6B and

6C). We identified cases of synergism and antagonism between

antibiotics consistent with previous work (Yeh et al., 2006) and

illuminated which combinations of antibiotic perturbations pre-

served or eliminated positive and negative interactions between

species. In our experiments, the impact of temperature was

particularly simple to assess because the population of droplets

from each encapsulation could be partitioned and incubated at

different temperatures. This further simplifies the application of

MINI-Drop when considering environmental variables that are

applied from a source external to the culture medium (e.g., gas

composition, external radiation, or light). The MINI-Drop method

could be used to decipher significant interactions between

strains and environmental parameters, which could inform the

design of interventions to steer communities to desired states.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

B. subtilis 168, trpC2, cat Burton Lab (University of

Wisconsin-Madison)

N/A

B. subtilis 168, trpC2, cat, amyE::Pveg-gfp-spec this work N/A

E. coli BW27783 CGSC 12119

E. coli MG1655z1 Elowitz Lab (Caltech) N/A

E. coli BW25113 pheA::Kan CGSC 10048

E. coli BW25113, metA::Kan CGSC 10856

E. coli K12 BW25113, DmetB, att::pLC280

[kan P_L’-cfp oriR6K]

Harcombe Lab (University

of Minnesota)

N/A

E. coli BW25113, pheA::Kan, pOSV006 This work N/A

E. coli BW25113, metA::Kan, pOSV006 This work N/A

E. coli BW27783, pOSV022 This work N/A

E. coli MG1655z1, pOSV151 This work N/A

M. extorquens AM1, DhprA::kan Harcombe Lab (University of

Minnesota)

N/A

S. typhimurium LT2, metA(P35L), metJ(16:IS10),

att::pLC246 [kan P_L’-yfp oriR6K]

Harcombe Lab (University

of Minnesota)

N/A

Chemicals, Peptides, and Recombinant Proteins

Carbenicillin Disodium Salt IBI Sicentific IB02025

Erythtromycin Sigma-Aldrich E5389-5g

Streptomycin Sulfate Salt Sigma-Aldrich S9137-25g

Isopropyl b-D-1-thiogalactopyranoside Sigma-Aldrich I6758-5G

3M Novec 7500 3M Novec 7500

Photoresist SU-8 3025 Microchem SU-8 3025

Photoresist SU-8 developer Microchem SU-8

Dow Corning Sylgard 184 poly(dimethylsiloxane) Dow Corning Sylgard 184

Krytox 157 FSH Zoro G0706231

Jeffamine ED-900 Sigma-Aldrich 14527500ML-F

Aquapel PPG Industries 8862547100

Recombinant DNA

pOSV006 mCherry expression vector this work N/A

pOSV022 AHL production vector this work N/A

pVP038 amyE::Pveg-gfp-spec

transformation vector

Burton Lab (University of

Wisconsin – Madison)

N/A

pOSV151 AHL inducible mazF vector this work N/A

Software and Algorithms

Anaconda (Python) https://www.anaconda.com/ N/A

OpenCV https://opencv.org/ N/A

Cytoscape 3.5 https://cytoscape.org/ N/A

MINI-Drop Image Analysis Scripts this work https://github.com/ryanusahk/MINI-Drop-

Supplementary-Code

MINI-Drop Stochastic Model Scripts this work https://github.com/ryanusahk/MINI-Drop-

Supplementary-Code

Deposited Data

Cell Counts and Interaction Magnitudes this work Tables S1, S2, and S5–S8

Stochastic Model Parameters this work Table S3

Raw Image Files from MINIMini-Drop Experiments this work Mendeley Data, https://doi.org/10.17632/g5ch5r7d6m.1
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents should be directed to and will be fulfilled by the Lead Contact, Ophelia S. Venturelli

(venturelli@wisc.edu).

Materials Availability Statement
Plasmids and strains generated in this study (Table S9) are available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

General Strain Maintenance: Bacillus subtilis, Escherichia coli, Methylobacterium extorquens AM1, and Salmonella

typhimurium LT2
All strains specified in Table S9 were maintained in 25% glycerol stocks prepared from cultures inoculated from single colonies and

then stored at�80�C. Strainswere recovered from glycerol stocks by inoculating liquid LB broth (Lennox, Sigma) or dilution streaking

onto LB agar plates with appropriate antibiotics and culturing at 37�C, with the exception of Methylobacterium extorquens, which

was streaked onto plates made with SOB Broth (Research Products International) and 15 g/L bacteriological agar (Bioworld) and

cultured at 30�C. Precultures were inoculated either directly from glycerol stocks or from single colonies on dilution streaked plates.

Bacillus subtilis Transformation
B. subtilis was inoculated into 1 mL MC medium (Loyo and Burton, 2018) and incubated for 4 hours at 37�C for transformation.

Plasmid DNA was first linearized by treatment with ScaI restriction enzyme (New England Biolabs). Next, 200 ng of plasmid DNA

was added to 200ml cell culture and incubated for 2 hours at 37�C. Transformed cells were selected by plating on LB plates containing

100 mgml1 spectinomycin (Gold Biotechnology). Plasmid pVP038 (Table S10) was transformed intoB. subtilis 168, trpC2, cat tomake

B. subtilis 168, trpC2, cat, amyE::Pveg-gfp-spec (Table S9).

Escherichia coli Cloning and Transformation
PCR amplifications were performed using Phusion High-Fidelity DNA polymerase (New England Biolabs) and oligonucleotides for

cloning were obtained from Integrated DNA Technologies. Standard cloning methods were used to construct plasmids. Plasmids

were derived from a previously built construct library (Lee et al., 2011). Plasmids in Table S10 were transformed into strains as

specified in Table S9.

METHOD DETAILS

Bacterial Cell Culturing
For experiments E1-7 (Table S1), strains were grown for approximately 12 hours at 37�C in LBmedium, diluted 1:50 into fresh LBme-

dium, and then grown to an OD600 of 0.31 asmeasured on a 1-cm spectrophotometer (NanoDrop Thermo Fisher Scientific). Next, the

culture (3mL)was centrifuged for 2min at 3,500 x g and supernatantwas removed. The cellswerewashed 4 by resuspending the pellet

in 0.5 mL of minimal media and centrifuged as described above. In experiment E1 (Table S1), cells were cultured in M9 supplemented

with glucose (1X M9 salts, 2 mMMgSO4, 100 mMCaCl2, 0.4% glucose), 1 mM isopropyl b-D-1-thiogalactopyranoside (IPTG, Sigma),

and 25mg/mL chloramphenicol (Sigma). The cell cultures containing different strainswere normalized to anOD600of 0.15 andmixed in

a 1:1 ratio. In experiment E2 (Table S1), B. subtilis and E. coli were mixed in a 2:1 volumetric ratio to account for differences in the cell

number to OD ratios. Cells were cultured in LBmedia containing 50 ng/mL anhydrotetracycline (aTc, Cayman Chemicals), 0.1% arab-

inose (Sigma) and 25 mg/mL chloramphenicol. In experiments E3-E7, cells were cultured in M9 media (1X M9 salts, 2 mM MgSO4,

100 mM CaCl2) with 1 mM IPTG supplemented with 0.4% glucose, 0.2% lactose, and/or 200 mM methionine as indicated.

In experiments E8-21 (Table S1), a single colony of ME, ST Lac* and EC Met- (CFP) were each inoculated into modified Hypho

media (Table S5) for 48 hr at 30�C with shaking. The OD600 was measured for each culture. Cultures were centrifuged for 2 minutes

at 3,500 g and resuspended in fresh modified Hyphomedium to OD600 values of 0.20, 0.033, and 0.14 for ME, ST Lac* and ECMet-,

respectively. These solutions were mixed in equal volume to form the community mixture. Immediately before cell encapsulation,

antibiotic(s) (6 mg/mL carbenicillin disodium salt (Sigma), 10 mg/mL erythromycin (Sigma), and 2.5 mg/mL streptomycin sulfate salt

(IBI Scientific)) were added to the community culture as specified and the culture wasmixed by vortexing. All droplets for experiments

E8-21 (Table S1) were encapsulated on the same day from the same community mixture to reduce variability across experiments.

Dynamic Range of Cell Counting
The bacterial strains EC Met- (CFP), EC WT (RFP), and ST Lac* (YFP) were grown in LB medium (with addition of 1 mM IPTG for EC

WT) to early stationary phase, centrifuged at 18,000xg for 1min, decanted, and resuspended inM9minimal mediumwithout glucose.

Next, the cells were centrifuged at 18,000 x g for 1 min, decanted, and resuspended in a smaller volume of M9 minimal medium

without glucose to concentrate the cells. The OD600 values of the concentrated EC Met-, EC WT and ST Lac* cultures were

14.4, 19.6, and 6.4, respectively. Equal volumes of each culture were combined to generate the mixed culture. The mixed culture
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was serially diluted by a factor of 2 until a dilution of 2-7 was reached. The diluted cultures were encapsulated separately using the

droplet maker device and the resulting droplets were imaged and quantified using the computational image analysis pipeline.

Fabrication of Microfluidic Devices
Photoresist masters of 25 mm layer height were fabricated by spinning a layer of photoresist SU-8 3025 (Microchem) onto a silicon

wafer (University Wafer), then baked at 95�C for 10 minutes. Following baking, photoresist master was patterned by UV photolithog-

raphy over a photomask (Data S1, CADArt). The master was subjected to post-exposure bake at 95�C for 4 min and developed in

fresh SU-8 developer (Microchem) for 6 min prior to rinsing with isopropyl alcohol (Fischer Scientific) and baking at 150�C to remove

the solvent. The microfluidic devices were fabricated by pouring poly(dimethylsiloxane) at a 11:1 polymer-to-crosslinker ratio (Dow

Corning Sylgard 184) onto the master and curing at 65�C for 1 hr. The PDMS devices were excised with a scalpel and cored with a

0.75-mm biopsy core (World Precision Instruments) to create inlets and outlets. The device was then bonded to a microscope

glass slide using an O2 plasma cleaner (Harrick Plasma), and channels were treated with Aquapel (PPG Industries) to render them

hydrophobic. Finally, the devices were baked at 65�C for 20 min to evaporate excess Aquapel prior to use.

Encapsulation of Cells into Droplets and Fluorescence Microscopy
To encapsulate cells into droplets, 1 mL syringes (BD Luer Lok) were fitted with 27-gauge needles and PE/2 tubing. 500 mL of the

culture was loaded into a 1 mL syringe. Fluorinated oil (3M Novec 7500) was prepared with 2% ionic Krytox 157 FSH surfactant

(experiments E1-E6) (Dejournette et al., 2013) or 2% of a block copolymer of Jeffamine ED-900 and Krytox 157 FSH (experiments

E7-E21) (Holtze et al., 2008) loaded into a 1 mL syringe. The free end of the tubing was primed and inserted into the droplet-making

device. Droplets were generated using flow rates of 600 mL hr-1 oil and 300 mL hr-1 cell culture at a 30 mm x 25 mm junction, which

generated �40mm diameter droplets at 4.8 kHz. After allowing at least 20 minutes for equilibration, droplets were collected into a

1.7 mL microfuge tube for at least 15 min and incubated as specified in each experiment. Droplets were loaded into chamber micro-

scopy slides (Invitrogen C10228) and imaged with a 20X objective (Nikon, MRH10201) on a Ti-E Eclipse invertedmicroscope (Nikon).

Fluorescence was imaged using the following filters (Chroma): (1) CFP: 436nm/20nm (ex), 480nm/40nm (em); (2) GFP: 470nm/40nm

(ex), 525/50nm (em); (3) RFP: 560nm/40nm (ex), 630/70nm (em); and (4) YFP: 500nm/40nm (ex), 535nm/30nm (em).

Fluorescence Microscopy Image Analysis
Custom code in Python was used for automated cell counting in droplets and microbial interaction network inference. Droplets were

identified from the phase-contrast images using the Hough transformation algorithm (OpenCV 3, Pulli et al., 2012). Droplets with a

diameter 10% larger or smaller than 40 mm were removed from the dataset. Fluorescent cells were segmented by identifying

connected regions using the SimpleBlobDetector object (OpenCV 3, Pulli et al., 2012). Droplets were binned by the presence or

absence of each fluorescently labeled strain. For experiments E1-7 (Table S1), interaction strength from strain j to strain i, where

droplet d contains dk cells of strain k, was defined according to Equation 1.

log2

�
meanðdicd

��di>0;dj>0Þ
meanðdicd

��di>0;dj = 0Þ
�

(Equation 1)

For experiments E8-21, interaction strengths were calculated as described in the text and summarized in Tables S6–S8. The

impact of each species on each other species (species-species interaction) was inferred by comparing to the number of cells in sin-

gle-species, no antibiotic droplets to two-species, no antibiotic droplets (6 possible interactions). The impact of each antibiotic on

each species (antibiotic-species interaction) was inferred by comparing the number of cells in single-species, no antibiotic droplets

to single-species, single-antibiotic droplets (9 possible interactions). The impact of each species on each antibiotic’s impact on each

other species (species-antibiotic-species interaction) was inferred by comparing the number of cells in single-species, single-

antibiotic droplets to two-species, single-antibiotic droplets (18 possible interactions). Finally, antibiotic-antibiotic-species interac-

tions were inferred by comparing the number of cells in single-species, single-antibiotic droplets to single-species, two-antibiotic

droplets (9 possible interactions). Network schematics were drawn with Cytoscapecytoscape 3.5 (Shannon et al., 2003).

Discrete-Time Markov Model of Cell Growth
Adiscrete-timeMarkovmodel was developed to recapitulate the experimentally measured cell count distributions. At each time step,

the propagation of each strain is determined by computing the probability of cell division ðPdiv; iÞ, cell death, or cell growth dormancy

for the duration of the experiment ðPdeath;iÞ, and remaining unchanged ðPstatic;iÞ (Equations 2, 3, and 4).

Pdiv; i = rdiv;io 3 Iiiðni; sii; kii; aiiÞ3 Iijðnj; sij; kij; aijÞ (Equation 2)
Pdeath;i = rdeath;io (Equation 3)
Pstatic;i = 1� ðPdiv;i +Pdeath;iÞ (Equation 4)

The parameter rdiv;io is the basal probability of cell division for strain i. The parameter rdeath;io represents the probability of cell death

of strain i (constant). ni denotes the number of cells of strain I and sij defines whether the outgoing interaction of strain j (donor) to
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strain i is positive ðsij = 1Þ or negative ðsij = � 1Þ. The parameters kij and aij define the sigmoidal interaction function Iij, representing

the incoming interaction for strain i produced by strain j (Equation 5).

Iij =

8>>>>><
>>>>>:

ð1+ aijÞekijnj

1+ aije
kijnj

; if sij = + 1

ð1+ aijÞ
1+ aije

kijnj
; if sij = � 1

(Equation 5)

The negative interaction function approaches zero as a function of nj whereas the positive interaction approaches ð1 + aijÞ =aij as a
function of nj. The values of aij and rdiv;i are constrained such that Pdiv; i%1 (Equation 6). The self-interaction function Iiiðni; sii; kii; aiiÞ is
less than one ðsii = � 1Þ and approaches zero as a function of ni, leading to saturation of the number of cells of strain i. The interaction

function Iij, is equal to 1 when nj = 0, representing the absence of an interaction between strain i and j. In the absence of an interaction

between strain i and j, Pdiv; i is not dependent on strain j ðsij = � 1;kij = 0;aij = 0Þ. The outgoing interaction from the partner strain j,

Iijðnj;sij;kij;aijÞ, can be positive or negative depending on the value of the parameter sij. The parameters aij and kij determine the inter-

action sensitivity defined as the number of partner cells at the half-maximum of the interaction function, bnj (Equation 6), and the rate of

change of the interaction as a function of the number of partner cells (Equation 7).

bnj =
1

kij
ln

�
1

aij
+ 2

�
(Equation 6)
dIij
dnj

����bnj

=

8>>>>>>>>>><
>>>>>>>>>>:

kij

�
1

aij
+ 2

�
4ðaij + 1Þ ; if sij = 1

�kij

�
1

aij
+ 2

�
aij

4ðaij + 1Þ ; if sij = � 1

(Equation 7)

At each time step, the state transition of a cell is independent of all other cells and the cell’s prior history. The state transitions were

simulated by sampling from a trinomial distribution determined by the probabilities Pdiv; i, Pdeath;i, and Pstatic;i. Communities were

simulated for 100 time-stepswherein each time-step corresponded to 10.8minutes of experimental time. Variables were constrained

such that the cell populations reached a steady state within the simulation time. The initial conditions for the simulations were

sampled from a Poisson distribution with l=1.5. Communities that did not contain both strains were discarded and resampled. Model

parameters are listed in Table S4.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed using NumPy version 1.13.1 (van Der Walt et al., 2011, Python 2 or 3 distributed through

Anaconda). Statistical significance (p value) between cell counts within droplets was computed using the two-sided Mann-Whitney

U test. Error bars represent the 95% confidence interval of the mean.

DATA AND CODE AVAILABILITY

The droplet image analysis code and stochasticmodel are accessible on aGitHub repository at: https://github.com/ryanusahk/MINI-

Drop-Supplementary-Code. The raw image files are available through Mendeley Data (https://doi.org/10.17632/g5ch5r7d6m.1).
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