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SUMMARY

Machine learning can infer how protein sequence maps to function without requiring a detailed understand-
ing of the underlying physical or biological mechanisms. It is challenging to apply existing supervised learning
frameworks to large-scale experimental data generated by deep mutational scanning (DMS) and related
methods. DMS data often contain high-dimensional and correlated sequence variables, experimental sam-
pling error and bias, and the presence of missing data. Notably, most DMS data do not contain examples of
negative sequences, making it challenging to directly estimate how sequence affects function. Here, we
develop a positive-unlabeled (PU) learning framework to infer sequence-function relationships from large-
scale DMS data. Our PU learning method displays excellent predictive performance across ten large-scale
sequence-function datasets, representing proteins of different folds, functions, and library types. The esti-
mated parameters pinpoint key residues that dictate protein structure and function. Finally, we apply our sta-
tistical sequence-function model to design highly stabilized enzymes.

INTRODUCTION

A protein’s sequence of amino acids encodes its function. This

‘‘function’’ could refer to a protein’s natural biological function,

or it could also be any other property including binding affinity

toward a particular ligand, thermodynamic stability, or catalytic

activity. A detailed understanding of how these functions are en-

coded would allow us to more accurately reconstruct the tree of

life, diagnose genetic diseases before they manifest symptoms,

and design new proteins with useful properties. The mapping

from protein sequence to function is extraordinarily complex

because it involves thousands of molecular interactions that

are dynamically coupled across multiple length and timescales.

Machine learning can infer how protein sequence encodes

function without needing to understand the underlying biophys-

ical mechanisms (Yang et al, 2019; Mazurenko et al, 2020).

These learning methods can be broadly categorized into unsu-

pervised and supervised depending on whether the data points

are labeled. In the protein context, unsupervised methods learn

from examples of sequences that share some common function

or property, while supervised methods learn from sequence-

function examples. Unsupervised methods are often trained on

natural sequence data derived from large genomic databases

and effectively learn the rules of folding/function for a given pro-

tein family (Morcos et al, 2011; Hopf et al, 2017; Riesselman et al,

2018). In contrast, supervised methods are trained directly on

sequence-function examples and, therefore, can learn the map-

ping to a particular protein property or set of properties. This

capability to predict a target protein property is important in pro-

tein engineering, which seeks to design and optimize non-natu-

ral protein functions. Supervised models have been used to

rationally engineer proteinases with improved activity at elevated

temperatures, cytochrome P450s with enhanced stability, car-

bonic anhydrases for industrial carbon capture, and bacteriorho-

dopsins for optogenetics (Liao et al, 2007; Romero et al, 2013;

Alvizo et al, 2014; Bedbrook et al, 2019).

The accuracy and resolution of statistical models improve with

increasing data; however, existing supervised methods cannot

directly learn from large-scale sequence-function data gener-

ated by deep mutational scanning (DMS) and related methods.

DMS combines high-throughput screening and next-generation

DNA sequencing to experimentally map sequence-function rela-

tionships for thousands tomillions of protein variants (Fowler and

Fields, 2014; Boucher et al, 2014; Weile and Roth, 2018). In prin-

ciple, DMS data should provide rich sequence-function informa-

tion for training supervisedmodels. However, learning fromDMS

data is challenging due to its scale and dimensionality, correla-

tions between sequence variables, sampling error caused by

low numbers of observations, and missing/low quality sequence

information. In addition, most DMS datasets do not contain

negative sequence examples because these sequences are

difficult or impossible to obtain using high-throughput
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screening/selection methods. These negative sequences are

important to directly infer how sequence maps to function.

Hence, DMS data are neither amenable to supervised learning

due to the lack of negative sequences nor unsupervised learning

since many sequences have positive labels.

In this paper, we present a supervised learning framework for

inferring sequence-function relationships from large-scale data

generated by DMS. We categorize DMS data as positive-unla-

beled (PU) data because they contain examples of both positive

sequences and sequences without labels. Learning from PU

data has applications in domains such as text mining, gene iden-

tification, marketing, and ecological modeling (Liu et al, 2003;

Mordelet and Vert, 2011; Yi et al, 2017; Ward et al, 2009). We

develop a PU learning method that models a protein’s function

as an unobserved latent variable and then infers how sequence

maps to this latent function by maximizing an observed likeli-

hood function. Our learned PU models displayed excellent pre-

dictive ability and stability across ten diverse DMS datasets.

The PU model’s parameters describe how amino acid substitu-

tions affect protein function, and the significance of these

parameter estimates can be evaluated using statistical hypothe-

sis testing. We demonstrate the extrapolative power of the

learned sequence-function mapping by designing enzymes

with increased thermostability.

RESULTS

A Statistical Framework for Learning Sequence-
Function Relationships
Supervised learning methods can infer how sequence maps to

function from a set of experimental sequence-function exam-

ples. However, it is challenging to apply existing learning

methods to large-scale data generated by DMS due to the lack

of negative sequence examples. We use the term DMS to

broadly refer to any experiment that maps sequence-function re-

lationships using a combination of gene mutagenesis, high-

throughput screening/selections, and next-generation DNA

sequencing. An overview of a standard DMS experiment is illus-

trated in Figure 1A. This section describes the DMS data gener-

ation process, introduces key statistical variables, and proposes

a PU approach to learn from DMS data.

A protein’s biochemical activity Ai is a function of its amino

acid sequence, i.e., Ai = fðxiÞ, where xi is a vector that specifies

a protein’s amino acid sequence (see STARMethods). Now sup-

pose a protein sequence can be categorized as active or inactive

depending on whether its activity Ai falls above/below a defined

activity threshold t. There is also some error in experimentally

determining whether a sequence is active or inactive. We define

a protein’s experimentally measured functional response as:

Yi =

�
1 if Ai + ei>t
0 if Ai + ei%t

; (Equation 1)

where ei is the randomerror associatedwith experimentally char-

acterizing the ith sequence.We say a sequence is ‘‘positive’’ if its

experimentally measured activity exceeds the threshold t (i.e.,

Yi = 1) and ‘‘negative’’ otherwise. Note that we make the subtle

distinction between the terms active/inactive and positive/nega-

tive: we use active/inactive to describe the true functional state

of a protein and positive/negative to indicate the result of an

experimental measurement.

A DMS experiment starts with an initial library of sequences that

eachmaps to a particular activity value and can be categorized as

active or inactive. We refer to this initial library as ‘‘unlabeled’’

because it contains an unknownmixture of active and inactive se-

quences. A high-throughput screen/selection then samples this

initial unlabeled library to obtain examples of positive sequences.

Notably, it is often difficult or impossible to isolate negative se-

quences because most experimental methods are designed to

identify positive sequences (e.g., growth selections). We refer to

the sampled positive sequences as ‘‘labeled’’ because they are

known to have positive labels. The sequences within the initial un-

labeled set and positive labeled set are then determined using

next-generation sequencing. The final data contain nu sequences

sampled from the unlabeled set and np sequences sampled from

the positive labeled set (Figure 1B).

We aim to learn from DMS data to understand how amino acid

sequence maps to function (i.e., infer f). If the data consisted of

(Xi;Yi) pairs, we could simply train a binary classifier such as a lo-

gistic regression model or a multilayer perceptron. However,

DMS experiments do not reveal the true functional response

(Y) but instead only provide examples of positive sequences.

The lack of negative sequence examples results in a mis-speci-

fied binary classification problem and makes it challenging to

directly infer how sequence maps to function.

We propose a PU approach to learn from DMS data. PU

learning estimates how input variables affect the positive-nega-

tive response from positive and unlabeled data (Liu et al, 2003;

Elkan and Noto, 2008; Song and Raskutti, 2019). We introduce

a binary variable Z that specifies whether a sequence is labeled

(Z = 1) or unlabeled (Z = 0). DMS experiments effectively

generate (Xi; Zi) pairs with an unobserved functional response

Yi (Figure 1C). From the setup of the problem, Z and Y are closely

related. In particular, all labeled sequences are positive, and the

proportion of positive sequences in the unlabeled set is the same

as that of the initial library. In other words,

PðY = 1jZ = zÞ =
�
1 if z= 1
p if z= 0

:

where p is the proportion of positive sequences in the initial li-

brary. We aim to infer f using the observed examples ðxi; ziÞni = 1,

where n= np + nu denotes the total number of sequence

examples.

Algorithms for Large-Scale Positive-Unlabeled Learning
Sequence-function data obtained by DMS typically contain

sequence examples from the initial (unlabeled) library and posi-

tive sequences (Figure 1). We develop algorithms for learning

the sequence-function mapping from this PU sequence data.

Our approach utilizes the distributional relationship between X,

Y, and Z to infer the latent functional response yi from the

observed labels ðziÞni =1 and amino acid sequences ðxiÞni = 1 and

then infer the f that best describes the latent responses ðyiÞni = 1.

We model f as a linear function of amino acid sequence

fðxÞ=P
j;aa

xj;aaaj;aa and use a logistic function to describe the prob-

ability that a sequence is positive:
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PqðY = 1jX = xÞ = exuq

1+ exuq
; (Equation 2)

where xuq=
P
j;aa

xj;aaaj;aa � t represents a relative activity level of

amino acid sequence x with respect to the activity threshold t

in (1), and q parameterizes the effect of making an amino acid

substitution from a defined reference sequence (see STAR

Methods). The model’s parameters (q) are closely related to the

site-wise enrichment scores that are commonly used to analyze

DMS data (Bloom, 2015; Klesmith and Hackel, 2019; Wrenbeck

et al., 2017; Abriata et al, 2016). However, site-wise enrichment

Figure 1. Positive-Unlabeled Learning from DMS Data

(A) Overview of a typical DMS experiment. DMS experiments start with a large library of gene variants that display a range of activities. The gene library is then

expressed and passed through a high-throughput screen or selection that isolates the positive variants. The activity threshold to be categorized as positive will

depend on the details of the particular high-throughput screen/selection. It is often difficult or impossible to experimentally isolate negative sequences. Genes

from the initial library and the isolated positive variants are then extracted and analyzed using next-generation DNA sequencing. DMS experiments generate

thousands to millions of sequence examples from both the initial and positive sets.

(B) DMS experiments sample sequences from protein sequence space. The resulting data contain positive labeled sequence examples (Y = 1;Z = 1) and

unlabeled sequence examples (Z = 0) that contain a mixture of active and inactive sequences.

(C) The relationships between variables representing protein sequences (X), latent function (Y), and the observed labels (Z). The functional response Y is not

directly observed in DMS experiments and must be inferred from X and Z.

(D) PU learning models the true PN response, while enrichment-based estimates capture the PU response. Modeling the PU response gives rise to a decision

boundary that is shifted toward the positive class, resulting in positive sequences that are misclassified as negative.

(E) PU learning estimates the conditional effect of a mutation, while site-wise enrichment estimates the marginal effect. Marginal estimates are biased and in

extreme cases can result in a sign reversal phenomenon known as Simpson’s paradox. In the example, we consider amino acid substitutions A/B at two

independent sites in a protein. If we observe sequences AA, BA, and BB, the marginal estimate will reverse the sign of substitution A/B at the first position. The

marginal model will also misclassify sequence BA as positive, even though it was observed to be negative. In contrast, the conditional estimate correctly models

the true protein function landscape.
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is a biased estimator for q because it is derived from PU data and

makes strong assumptions about the independence between

sequence positions. We derive the mathematical relationship

between site-wise enrichment and a mutation’s true effect (q)

in the STAR Methods.

We take a likelihood-based approach for estimating q from the

observed examples ðxi; ziÞni = 1. To account for the fact that the true

responses ðyiÞni = 1 are latent, we use an observed likelihood that is

a product of the marginalized probabilities (Ward et al, 2009)

[ ðqÞ =
Yn
i = 1

 X
yi˛ð0;1Þ

PðYi = yi;Zi = zijXi = xi;Si = 1Þ
!

=
Yn
i = 1

�
np

np +pnu

exu
i
q+b

1+ exu
i
q+b

�zi�
1� np

np +pnu

exu
i
q+b

1+ exu
i
q+b

�1�zi

(Equation 3)

for b : = log
np +pnu
pnu

, where Si˛ð0;1Þ is an indicator variable rep-

resenting whether the ith example is present in the data. We use

the maximum likelihood approach to estimate q. In particular, we

minimize the negative observed log-likelihood and define the

estimated coefficients bq as

bq = argmin
q
f � log[ ðqÞ g (Equation 4)

The negative observed log-likelihood, �log[ðqÞ, is a non-

convex function of q. Obtaining a global minimizer of a non-

convex function is in general a challenging problem, so the feasi-

bility of obtaining bq is not immediate. We previously found similar

classes of problems can be solved when the likelihood function

is calculated with sufficiently large sample size n (Song et al.,

2020). In these cases, any stationary point is the global minimizer

with high probability. Since our sequence-function datasets typi-

cally contain millions of observations, we can find the maximum

likelihood estimate by identifying a stationary point of the nega-

tive-observed log-likelihood.

We solved this optimization problem using the Majorization-

Minimization (MM) algorithm to obtain a stationary point of the

negative observed log-likelihood function (Equation 3). Note

that the likelihood (Equation 3) involves the hyperparameter p,

the proportion of positive sequences in the unlabeled set. p

was experimentally determined for some datasets, and we

used this value for the hyperparameter if it was available. Other-

wise, we carried out a grid search over p values and chose the p

value that maximized the area under the receiver operating char-

acteristic curve. We used the learned model parameters to

calculate p values to test whether amino acid substitutions

have a significant impact on protein function. These p values

were adjusted using the Benjamini-Hochberg (BH) procedure

to account for multiple hypothesis testing (STAR Methods). An

overview of our data processing, parameter estimation, and

model analysis workflow is provided in Figure S2.

Relationship between Learned PU Model Parameters
and Site-Wise Enrichment Scores
There is a close connection between our PUmodel’s parameters

and the site-wise enrichment scores that are commonly used to

analyze DMS data (Bloom, 2015; Klesmith and Hackel, 2019;

Wrenbeck et al, 2017; Abriata et al., 2016). Both quantities eval-

uate how amino acid substitutions affect a protein’s functional

response (i.e., estimate a0j;aa). However, our PU model provides

a consistent estimate of a0j;aa because it directly models the

true positive-negative (PN) response and considers the condi-

tional effects of amino acid substitutions. In this section, we

define site-wise enrichment scores, contrast them with the PU

model parameters, and identify two different sources of bias in

their estimate of a0j;aa.
Site-wise enrichment scores are calculated using marginal

amino acid frequencies:

Ej;aa = log

�P
i˛Pxi;j;aa

�
npP

i˛Uxi;j;aa
�
nu

�
� log

 P
i˛Pxi;j;refj

�
npP

i˛Uxi;j;refj
�
nu

!
(Equation 5)

where P and U are the positive and unlabeled sets of se-

quences, respectively. Ej;aa compares the prevalence of amino

acid aa with the reference sequence (typically wild type) in the

positive and unlabeled sets. A residue with a negative enrich-

ment score is underrepresented in the positive set and there-

fore associated with decreased protein activity. Conversely, a

residue with a positive enrichment score is associated with

the increased protein activity. These enrichment scores provide

a simple and convenient method to compare frequencies

before/after selection and estimate the effects of amino acid

substitutions.

Enrichment and our PU learning method capture different

response variables related to protein function (Figure 1D).

Enrichment models the PU response, and since all labeled se-

quences are positive, this is equivalent tomodeling a sequence’s

label Z. In contrast, our PU learning method directly models the

PN response by inferring the latent function Y from observed la-

bels Z. The presence of positive sequences in the unlabeled set

causes enrichment-based methods to provide attenuated esti-

mates of an amino acid substitution’s effect (see STAR

Methods). This leads to a decision boundary that is shifted to-

ward the positive class and results in misclassified sequences.

Our PU learning method models the true PN response and

thus provides an unbiased estimate of a substitution’s ef-

fect a0j;aa.
The second key difference between PU model parameters

and enrichment is related to marginal versus conditional ef-

fects. Our PU learning method estimates the effect of an amino

acid substitution from a defined sequence background, typi-

cally wild type. This is a conditional estimate because the effect

of the mutation is conditioned on all other sites in the protein.

This conditional effect provides an unbiased estimate of an

amino acid substitution’s effect a0j;aa. In contrast, site-wise

enrichment estimates the effect of an amino acid substitution

in combination with averaged effects from all other sites in

the dataset. These marginal estimates include the true effect

a0j;aa, in addition to indirect effects from other sequence posi-

tions. These indirect effects lead to bias in the estimate of

a0j;aa (see STAR Methods). In more extreme instances, marginal

estimates can reverse the sign of an effect and lead to incorrect

conclusions about whether a substitution is beneficial or dele-

terious (Figure 1E). This effect reversal is referred to as Simp-

son’s paradox.
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Learning from Large-Scale Sequence-Function Data
We applied our PU learning method to infer the sequence-activ-

ity mapping from ten large sequence-function datasets (see

Table S1). These datasets represent proteins of diverse folds/

functions, were generated using different library mutagenesis

methods, span several orders of magnitude in size, and have

varying levels of missing sequence information. The PU models

displayed excellent predictive ability on all ten datasets, with

cross-validated area under the receiver operating characteristic

curve (ROC-AUC) ranging from 0.68 to 0.98 (Figures 2A and 2B).

For comparison, we also evaluated predictions from structure-

based (Alford et al, 2017) and unsupervised learning methods

(Hopf et al, 2017; Riesselman et al, 2018). Rosetta, EVmutation,

and DeepSequence all displayed substantially lower AUC values

than the PU model (Figures 2B and S3A).

Our PU learningmethod estimates howmutations affect a pro-

tein’s functional response. This PU estimate is closely related to

the site-wise enrichment scores that are commonly used to

analyze DMS data. We compared the predictive ability of the

PU model versus enrichment using a corrected cross-validation

test.We found the PUmodel predictionswere better than enrich-

ment for all ten datasets, with p<10�9 (Figure 2C). However, the

PU models’ AUCs were only marginally higher than enrichment,

with AUC differences ranging from 0.002 to 0.017 (Figure S3B).

We evaluated the robustness of the learned PUmodels to data

sampling and the hyperparameter p. We analyzed the stability of

each model’s parameter estimates by calculating the coefficient

of variation (CV) across different cross-validation folds for all sig-

nificant parameters (i.e., BH-adjusted p<0:05). The parameters

displayed average absolute CVs ranging from 0.01 to 0.08 (Fig-

ure 3C), indicating the estimates were highly insensitive to

different training sets. We also evaluated the feature selection

stability by computing the average fraction of commonly

selected features across different cross-validation folds (STAR

Methods). We found the selected features were nearly identical

across cross-validation folds for each dataset (Figure S3D).

Finally, we tested how the choice of the hyperparameter p

(experimentally determined or estimated) affects the learned

PU models. We found the parameter values estimated using

our chosen p value were highly correlated with parameters esti-

mated across the entire range of p values tested (Figure S3E).

Learned Parameters Relate to Protein Structure and
Function
The B1 domain of protein G (GB1) is a small 8-kDa alpha-beta roll

that binds to IgG. We performed further analyses relating the

learned GB1 model with protein G structure and function. The

PUmodel’s coefficients describe how an amino acid substitution

(mutation) affects the protein’s functional response (Equation 7).

A negative coefficient indicates that a substitution decreases

protein activity, whereas a substitution with a positive coefficient

increases activity. We found that most amino acid substitutions

in GB1 are slightly deleterious, while a smaller subset is highly

deleterious (Figure 3A). Each position in the amino acid

sequence displayed a range of mutational effects (Figure 3B).

Substitutions to proline are themost deleterious on average (pre-

sumably because they disrupt protein structure), followed by

substitutions to the acidic amino acids. We found a site’s

average mutational effect is highly dependent on its location in

the three-dimensional structure. Sites with large average muta-

tional effects tend to be located in either the protein core or

the IgG-binding interface (Figures 3B and 3C).

GB1 residues E27, K31, and W43 have the most negative

average mutational effect, suggesting that many substitutions at

these positions are highly deleterious. Consistent with the model

results, these three residues are known to form key hydrogen

bonds and salt bridges with the IgG ligand and make the largest

contributions to the free energy of binding (Sauer-Eriksson et al,

1995; Sloan and Hellinga, 1999). Residues A24 and D40 have

the largest positive average mutational effect, with many

Figure 2. Performance of the PU Learning Method across Protein Datasets
(A) ROC curves for the ten tested protein datasets. ROC curves were generated using a 10-fold cross-validation and were corrected to account for PU data (see

STAR Methods and Figure S1).

(B) The PU model’s corrected ROC-AUC values range from 0.68 to 0.98 and outperform structure-based (Rosetta) and unsupervised learning methods (EVmu-

tation and DeepSequence). Error bars for the PU model predictions were calculated by taking the standard deviation of AUCs across ten cross-validation folds.

(C) A statistical comparison between PUmodel predictions and site-wise enrichment. The PUmodel outperformed enrichment on all ten tested datasets, with p<

10�9. p values were calculated using a corrected repeated cross-validation test.
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substitutions that are predicted to increase GB1 activity. Both of

these sites are located in the IgG-binding interface. Previous

studies have identified residue position 24 to play a key role in

IgG binding, and substitutions from A24 can increase binding af-

finity through improved ionic interactions (Sauer-Eriksson et al,

1995). Furthermore, computationally designed high-affinity pro-

tein G variants have substitutions at position 24 (Jha et al, 2014).

The model parameters suggest that residue D40 prefers substitu-

tion to aromatic amino acids (Figure 3B). Inspection of the crystal

structure suggests these mutations could form potential interac-

tions (pi-pi, cation-pi) with a nearby histidine in IgG (Figure S4).

Statistics-Based Protein Design
Our PU learningmethod provides a quantitative description of the

sequence-function mapping. The model also captures statistical

uncertainties arising from undersampling and correlated

sequence variables.Here, wedevelop a protein design framework

that leverages this statistical sequence-function information.

We trained a PU model on a Bgl3 deep mutational scan that

had been performed at an elevated temperature (Bgl3-HT, Table

S1) (Romero et al, 2015). Under these experimental conditions,

the positive class corresponds to Bgl3 sequences with a high

thermal tolerance, and therefore the model should learn how

amino acid substitutions affect thermostability. The learned PU

model displayed excellent predictive ability (corrected AUC of

0.72, Figure S5A).

We applied the PU model to design Bgl3 variants based on

either coefficient magnitudes or p values (Figure 4A). The coeffi-

cient-based design (Bgl.cf) contained ten amino acid substitu-

tions corresponding to the ten largest positive coefficients. The

Figure 3. Model Parameters Relate to GB1 Structure and Function

(A) The distribution of model coefficients. Most coefficients have a relatively small magnitude, while a substantial fraction of coefficients have a large negative

effect.

(B) A heatmap of the GB1 model coefficients. The wild-type amino acid is depicted with a black dot. Buried and interface residues tend to have larger magnitude

coefficients, indicating their important role in GB1 function. Buried and interface residues were determined from the protein G crystal structure (PDB: 1FCC).

Buried residues were defined as having a relative solvent accessibility less than 0.1. Interface residues were defined as having a heavy atom within 4 Å of IgG.

(C) The site-wise average model coefficients mapped onto the protein G crystal structure (PDB: 1FCC). The IgG-binding partner is depicted as a gray surface.

Residues in the protein core and binding interface tend to have the largest average coefficients.
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p-value-based design (Bgl.pv) contained ten substitutions corre-

sponding to the ten positive coefficients with the smallest p

values. We also designed a sequence that contained the ten

substitutions with the largest enrichment scores (Bgl.en). The

Bgl.cf and Bgl.en designs contained six common substitutions,

while the substitutions in Bgl.pv were distinct from the other

two (Figure S5B). The substitutions within these three designs

are generally distributed throughout the protein structure (Fig-

ure 4B); however, there appears to be some bias for the coeffi-

cient/enrichment designs to choose substitutions in the termini.

We experimentally characterized the thermostability of wild-

type Bgl3 and the three designed enzymes. All three designed

sequences were stabilized relative to wild-type Bgl3 (Figure 4C).

The coefficient- and enrichment-based designs displayed

modest stability increases (� 2
�
C), while the p-value-based

design was almost 12+C more stable than wild-type Bgl3.

DISCUSSION

We have presented a supervised learning framework to infer the

mapping from protein sequence to function from large-scale

sequence-function data. We applied a PU learning approach to

address the lack of negative sequence examples typically

encountered in DMS data. Our PU learning method models a

protein’s true functional response as an unobserved latent vari-

able and then estimates how sequence maps to this latent

response by maximizing the observed likelihood. Our approach

leverages established statistical methods and hypothesis testing

to evaluate the significance of sequence features and predic-

tions. The PU models displayed excellent predictive ability and

robustness across ten diverse protein datasets. The learned

model parameters capture important aspects of protein struc-

ture and function and can be used to design new and enhanced

proteins.

We compared the PU model’s predictive ability to established

structure-based and unsupervised learning methods including

Rosetta, EVmutation, and DeepSequence. This is a rather un-

equal comparison because the PU model is trained directly on

the DMS data, whereas the other methods are trained on periph-

erally related sequence/structure data. As expected, the PU

model displayed substantially higher predictive performance

than structure-based or unsupervised methods. These other

methods have the distinct advantage that they canmake reason-

able predictions in the absence of DMSdata, while our PUmodel

requires DMS data for training. The relative performance of these

various predictive methods is likely dependent on the particular

protein activity that is being modeling. We expect Rosetta to

capture protein activities related to folding and stability; while

EVmutation and DeepSequence may capture preservation of

native function and the associated biophysical properties. Along

these lines, supervised methods that learn the mapping to a

particular property are required tomodel and predict non-natural

protein properties. The ability to predict non-natural properties is

essential for designing new proteins with behaviors beyond

naturally evolved biological function.

There is a close connection between our PU model’s parame-

ters and the enrichment scores commonly used to evaluate DMS

experiments. Both methods estimate how amino acid substitu-

tions affect a protein’s functional response. However, there are

two key differences in these estimates: (1) enrichment-based

methods estimate the PU response, whereas our method

directly estimates the PN response, and (2) enrichment-based

methods estimate marginal amino acid effects and therefore

make strong assumptions about the independence between

sequence positions. In theory, the parameters estimated using

our PU learning method should provide a more accurate and

less biased estimate of how amino acid substitutions affect func-

tion. We found the PU model had greater predictive ability than

enrichment on all ten protein datasets tested. While the differ-

ences in predictive performance were small (AUC differences

<0:02), these differences were statistically significant (p<10�9)

in all cases. These results suggest that the learned PU model

Figure 4. Applying the PU Model to Design Enhanced Proteins

(A) A plot of model coefficients versus p values. Sequences were designed to combine ten mutations with the largest coefficient values, smallest p values, or

largest enrichment scores.

(B) The positions chosen by the three design methods are mapped onto the Bgl3 protein structure. The structure is based on the Bgl3 crystal structure (PDB:

1GNX) and missing termini/loops were built in using MODELLER (Sali and Blundell, 1993).

(C) Thermostability curves for wild-type Bgl3 and the three designed proteins. T50 values were estimated by fitting a sigmoid function to the fraction of active

enzyme. Note the curve for Bgl.en is shown in yellow and falls directly behind the orange Bgl.cf curve.
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is better overall, but the predictions may not be much different

from enrichment. The greatest advantage of the PU model

over enrichment is the ability to perform statistical hypothesis

testing to evaluate the significance of the model parameters. Hy-

pothesis testing provides confidence in the parameter estimates

and predictions and is thus essential for protein design.

We applied the learned PU models to design beta-glucosi-

dases with improved thermal tolerance. We compared design

strategies based on enrichment, PU model coefficients, and p

values. We found that enrichment- and coefficient-based

methods chose similar substitutions, and the resulting designs

had modest increases in thermostability. In contrast, the p-

value-based design contained a distinct set of substitutions

and was significantly stabilized relative to the wild-type parent

sequence. These results suggest that it is better to design se-

quences containing high-confidence substitutions rather than

including uncertain substitutions with the largest magnitudes.

In principle, this protein engineering strategy could be imple-

mented iteratively, where a DMS dataset is generated from an

initial parent sequence, these data are used to design an

improved sequence, then a new DMS dataset is generated

around this improved sequence, and the process is repeated.

This iterative sequence optimization approach is similar to

directed evolution; however, it fully leverages sequence-function

information at each generation, allowing it to take larger jumps in

protein sequence space.

There are several interesting extensions of the PU learning

framework presented here. In this work we only considered a

linear sequence-function mapping. In theory, our modeling

framework could be extended to include pairwise or even higher

order interactions between residues. These models would ac-

count for epistatic interactions between sites and could possibly

be used to determine contacting residues in the protein’s three-

dimensional structure. We performed preliminary tests to eval-

uate whether we could model interactions in DMS data and

found the massive increase in system variables made the com-

putations intractable in most cases. Future work could explore

more efficient algorithms for learning from high-dimensional

interaction models. Another interesting area to explore is multi-

response models that consider several protein properties simul-

taneously. For example, we could model the Bgl3 room-temper-

ature and high-temperature datasets simultaneously to directly

resolve the residues responsible for protein stability. Finally,

our PU modeling approach used a point estimate for the hyper-

parameter p. A more integrated modeling framework could ac-

count for uncertainty in p estimates and how this propagates

to model coefficients and p values.

We applied our PU learning framework to model protein

sequence-function relationships. In principle, similar ap-

proaches could be used to model genotype-phenotype map-

pings across any level of biological organization. PU data arise

whenever a population of genetic variants (generated via muta-

genesis, crossbreeding, etc.) is passed through a phenotypic

screen/selection, and the genotypes from the before/after pop-

ulations are determined using high-throughput DNA sequencing.

This general format has been used to experimentally map geno-

type-phenotype relationships for promoters/regulatory se-

quences (Kosuri et al., 2013; Holmqvist et al., 2013), metabolic

pathways (Ghosh and Landick, 2016), microbial and mammalian

genomes (Ehrenreich et al., 2010; Robins et al, 2013; Price et al,

2018; Findlay et al., 2018), and microbial communities (Kehe

et al, 2019; Hsu et al., 2019).

A quantitative understanding of the mapping between protein

sequence and function is important for describing natural evolu-

tion, diagnosing and treating human disease, and designing

customized proteins. Advances in experimental technology

have enabled researchers to map sequence-function relation-

ships on an unprecedented scale and resolution. The resulting

data are challenging to analyze because they are typically

massive, high-dimensional, contain missing sequence informa-

tion, and lack negative sequence examples. Our PU learning

framework provides a principled way of analyzing large-scale

sequence-function data to yield biochemical insights and make

quantitative predictions.
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Materials Availability
Plasmids generated in this are available from the Lead Contact.

Data and Code Availability
This paper analyzes existing, publicly available data. These datasets’ accession numbers are provided in the Key Resources Table

and Table S1. The PU learning code is publicly available on GitHub: https://github.com/RomeroLab/pudms The scripts used to

analyze the data sets and generate the figures reported in this paper are available on GitHub: https://github.com/RomeroLab/PU-

learning-paper-analysis Any additional information required to reproduce this work is available from the Lead Contact.’’

METHOD DETAILS

Linear Sequence-Function Model
Wemodel the sequence-functionmapping f as a linear function of amino acid sequence. Suppose we have a protein of length L and a

protein’s activity can be described as the sum of individual amino acid contributions:

Ai =
X
j˛½L�

X
aa˛S

xi;j;aaaj;aa; (Equation 6)

where xi;j;aa˛f0;1g is a binary variable that specifies whether sequence i has amino acid aa at position j, aj;aa specifies the contribution

of amino acid aa at position j to protein activity, ½L� is the set of all positions in the sequence ð1;.;LÞ, and S is the set of all 20 amino

acids and the stop codon ðA;V ;.; �Þ.We note that each sequence position takes on one and only one-amino acid option (
P
aa˛S

xi;j;aa = 1

for all i; j) and therefore the model is over-parameterized. We introduce a reduced model:

Ai =
X
j˛½L�

aj;refj +
X
j˛½L�

X
aasrefj

xi;j;aaa
0
j;aa; (Equation 7)

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Rocker data set Romero Lab, UW-Madison SRR12767727,
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Protein G domain B1 protein structure Protein Data Bank PDB ID: 1FCC

Beta-glucosidase

protein structure

Protein Data Bank PDB ID: 1GNX

Recombinant DNA

Beta-glucosidase

gene (bgl3) from

Streptomyces sp.

strain QM-B814

GenBank GenBank: CAA82733.1

Software and Algorithms

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2

Rosetta Alford et al., 2017 https://www.rosettacommons.org/

software/

EVmutation Hopf et al., 2017 https://marks.hms.harvard.edu/

evmutation/

DeepSequence Riesselman et al., 2018 https://github.com/debbiemarkslab/

DeepSequence

HMMER Wheeler and Eddy, 2013 http://hmmer.org/

PU learning code This Paper https://github.com/RomeroLab/pudms

scripts used to analyze the data sets and

generate the figures

This Paper https://github.com/RomeroLab/

PU-learning-paper-analysis
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where refj is a reference amino acid state for the jth position. This reference sequence is typically the wild-type parent sequence that

was used to make the DMS library. It can be shown with simple algebra that a0j;aa = aj;aa � aj;refj , and therefore a0j;aa parameterizes the

effect of making an amino acid substitution from the reference state refj to aa at position j.

Our linear sequence-function model can be specified in vector notation as:

Ai = xui q+ t (Equation 8)

where xi is a one-hot encoded vector that specifies a protein’s amino acid sequence:

xi =
h
1; ðxi;1;aaÞaasref1

;.; ðxi;L;aaÞaasrefL

i
(Equation 9)

and the vector q contains the model parameters:

q =

2664
0BB@X

j˛½L�
aj;refj � t

!
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

intercept

; ða01;aaÞaasref1
;.; ða0L;aaÞaasrefL|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

coefficients

3775
Here we see that the intercept term parameterizes the activity of the reference sequence relative to the activity threshold t.

Site-Wise Enrichment Captures Marginal Effects, Which Are Biased
Here we demonstrate that site-wise enrichment scores capture marginal mutational effects that are in general biased for estimating

an amino acid substitution’s true effect a0j;aa. Suppose the true positive-negative responses ðyiÞ were available. Enrichment scores

can be calculated from this positive-negative (PN) response as:

EY
j;aa = log

�P
i˛Pxi;j;aa

�
npP

i˛Nxi;j;aa
�
nn

�
� log

 P
i˛Pxi;j;refj

�
npP

i˛Nxi;j;refj
�
nn

!
: (Equation 10)

where P and N are the positive and negative sets of sequences. We demonstrate that EY
j;aa are in general biased for a0j;aa.

Recall the logistic model from Equation 2 in the main text:

PðYi = 1jxiÞ =
exp

�
q0 +

P
j˛½L�
P

aasrefj
xi;j;aaa0j;aa

�
1+ exp

�
q0 +

P
j˛½L�
P

aasrefj
xi;j;aaa0j;aa

� (Equation 11)

where q0 =
P
j˛½L�

aj;refj � t and xi = ðxi;j;aaÞj˛½L�;aa˛S is a one-hot encoded vector of the sequence i. Maximizing the likelihood function

[ðqÞ= logð
Yn
i =1

yPðYi = 1jðxi;j;aaÞj˛½L�;aa˛SÞÞwill produce consistent estimates for a0j;aa. Consistent estimates will approach the true value

of a0j;aa as the number of data points increases. It is a well-known result in statistics that the maximum likelihood estimator provides a

consistent estimate.

Site-wise enrichment scores calculated from the true PN response ðyiÞ are equivalent to the maximum likelihood estimates (MLE)

from a logistic model that considers only one site at a time:

PðYi = 1
		xi;jÞ = exp

�
gj;0 +

P
aasrefj

xi;j;aagj;aa

�
1+ exp

�
gj;0 +

P
aasrefj

xi;j;aagj;aa

�; (Equation 12)

where xi;j = ðxi;j;aaÞaa˛S . Note how this equation only includes terms related to the jth position, in contrast to Equation 11, which sums

over all j˛½L�.
We demonstrate that the MLE of gj;aa is equal to the enrichment score calculated from the true positive-negative responses EY

j;aa.

The maximum likelihood estimate bg : = ðbg j;0; ðbg j;aaÞaasrefj
Þ solves likelihood equations

Xn
i =1

yi =
Xn
i = 1

exp
�
gj;0 +

P
aasrefj

gj;aaxi;j;aa

�
1+ exp

�
gj;0 +

P
aasrefj

gj;aaxi;j;aa

�;
and for all aasrefj,
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Xn
i = 1

yixi;j;aa =
Xn
i = 1

exp
�
gj;0 +

P
aasrefj

gj;aaxi;j;aa

�
1+ exp

�
gj;0 +

P
aasrefj

gj;aaxi;j;aa

�xi;j;aa

=
X

i;xi;j;aa = 1

expðgj;0 +gj;aaÞ
1+ expðgj;0 +gj;aaÞ

:

That is:

jfi; yi = 1gj = 		
i; xi;j;refj = 1
�		 expðgj;0Þ

1+ expðgj;0Þ
+
X

aasrefj

		
i; xi;j;aa = 1
�		 expðgj;0 +gj;aaÞ

1+ expðgj;0 +gj;aaÞ
; (Equation 13)

and for all aasrefj, 		
i; yi = 1; xi;j;aa = 1
�		 = 		
i; xi;j;aa = 1

�		 expðgj;0 +gj;aaÞ
1+ expðgj;0 +gj;aaÞ

; (Equation 14)

where jAj denotes the size of A. Solving Equations 13 and 14 for gj;aa,

bg j;aa = log

�		
i; yi = 1; xi;j;aa = 1
�				
i; yi = 0; xi;j;aa = 1
�		
�
� log

 		
i; yi = 1; xi;j;refj = 1
�				
i; yi = 0; xi;j;refj = 1
�		
!

= log

�P
i˛Pxi;j;aaP
i˛Nxi;j;aa

�
� log

 P
i˛Pxi;j;refjP
i˛Nxi;j;refj

!

= log

�P
i˛Pxi;j;aa

�
npP

i˛Nxi;j;aa
�
nn

�
� log

 P
i˛Pxi;j;refj

�
npP

i˛Nxi;j;refj
�
nn

!
= EY

j;aa:

Thus bg j;aa = EY
j;aa.

In addition, gj;aasa0j;aa in general because the estimate for gj;aa does not consider other sites and is therefore subject to omitted

variable bias (e.g. see Lee (1982)). From this we can conclude that site-wise enrichment scores calculated from the true positive-

negative response (EY
j;aa) provide biased estimates for a0j;aa.

There exists one exception when sequence positions are independent given each response class. In this case, gj;aa = a0j;aa and

enrichment scores from the positive-unlabeled response provide consistent estimates a0j;aa. Class conditional independence be-

tween positions is unlikely to hold for any DMS data set due to biophysical interactions between sites, correlated sequence variables

in multi-mutant sequences, and the nonlinear threshold in the response.

Enrichment-Based Methods Provide Attenuated Estimates of a Mutation’s Effect due to Latent Positive Sequences
Here we demonstrate that enrichment scores calculated from positive-unlabeled (PU) responses provide biased estimates of a mu-

tation’s effect. Consider the population enrichment score EY
j;aa calculated from the positive-negative (PN) responses:

EY
j;aa : = log

�
PðXj;aa = 1

		Y = 1Þ
PðXj;aa = 1

		Y = 0Þ
�
� log

 
P
�
Xj;refj = 1

		Y = 1


P
�
Xj;refj = 1

		Y = 0
!: (Equation 15)

which correspond to an amino acid substitution’s true marginal effect, i.e. the effect of changing site j from refj to amino acid aawhile

allowing all other positions to vary. Also consider the population enrichment score EZ
j;aa calculated from PU responses

EZ
j;aa : = log

�
PðXj;aa = 1

		Z = 1Þ
PðXj;aa = 1

		Z = 0Þ
�
� log

 
P
�
Xj;refj = 1

		Z = 1


P
�
Xj;refj = 1

		Z = 0
!: (Equation 16)

We consider EY
j;aa to be the true marginal effect, and show that enrichment calculated from the PU response EZ

j;aa is not equivalent

(i.e. EZ
j;aasEY

j;aa). We also demonstrate that EZ
j;aa provides an attenuated estimate of the true mutational effect due to latent positive

sequences in the unlabeled set.

Since labeled sequences are positive, for any k˛ðA;V ;.; �Þ we have

PðXj;k = 1jZ = 1Þ = PðXj;k = 1
		Y = 1Þ:

On the other hand,

PðXj;k = 1
		Z = 0Þ = PðXj;k = 1;Y = 1;Z = 0Þ+PðXj;k = 1;Y = 0;Z = 0Þ

PðZ = 0Þ
=PðXj;k = 1jY = 1ÞPðY = 1jZ = 0Þ + PðXj;k = 1jY = 0ÞPðY = 0jZ = 0Þ
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Therefore,

PðXj;k = 1
		Z = 0Þ

PðXj;k = 1
		Z = 1Þ=

PðXj;k = 1
		Y = 1ÞPðY = 1jZ = 0Þ+PðXj;k = 1

		Y = 0ÞPðY = 0jZ = 0Þ
PðXj;k = 1

		Y = 1Þ

=p ,1 + ð1�pÞPðXj;k = 1
		Y = 0Þ

PðXj;k = 1
		Y = 1Þ:

(Equation 17)

where p : = PðY = 1jZ = 0Þ = PðY = 1Þ. Applying Equations 17 to 16 with k˛frefj;aag,

EZ
j;aa := log

 
P
�
Xj;refj = 1

		Z = 0


P
�
Xj;refj = 1

		Z = 1
!� log

�
PðXj;aa = 1

		Z = 0Þ
PðXj;aa = 1

		Z = 1Þ
�

= log

0BBB@
p,1+ ð1� pÞ

P

�
Xj;refj

= 1

			Y = 0

�
P

�
Xj;refj

= 1

			Y = 1

�
p,1+ ð1� pÞ PðXj;aa = 1jY = 0Þ

PðXj;aa = 1jY = 1Þ

1CCCA
To ease notation, let

RY
k : =

PðXj;k = 1
		Y = 1Þ

PðXj;k = 1
		Y = 0Þ:

Then,

exp
�
EZ
j;aa

�
: =

p+ ð1� pÞ 1
RY
refj

p+ ð1� pÞ 1
RY
aa

=

 
pRY

refj
+ ð1� pÞ

pRY
aa + ð1� pÞ

!
RY

aa

RY
refj

=

 
pRY

refj
+ ð1� pÞ

pRY
aa + ð1� pÞ

!
exp

�
EY
j;aa

�
Note RY

aa>R
Y
refj

if and only if exp
�
EZ
j;aa

�
<exp

�
EY
j;aa

�
. In other words, EY

j;aa>0 if and only if EZ
j;aa<EY

j;aa. Since EY
j;aa = log

�
RY
aa

� log
�
RY
refj

�
by definition, RY

aa>R
Y
refj

is equivalent to EY
j;aa>0. That is, EY

j;aa>0 if and only if EZ
j;aa<EY

j;aa. Therefore, EZ
j;aa underestimates the effect amino

acid substitutions with positive effects (EY
j;aa>0) and overestimates substitutions with negative effects.

Data Preprocessing
We obtained the ten large-scale sequence-function data sets from previously published work (Olson et al, 2014. Wrenbeck et al,

2019; Weile et al, 2017. Doud and Bloom, 2016; Romero et al., 2015) and the Sequence Read Archive (SRA) (Leinonen et al.,

2011). The details of each data set and their SRA accession numbers are available in Table S1, and an overview of the data process-

ing is summarized in Figure S2. For each data set, we obtained raw FASTQ files for both unlabeled and positive sequences, andmap-

ped these reads to a reference sequence using Bowtie2 (Langmead and Salzberg, 2012). We translated the aligned gene sequences

to amino acid sequences, and filtered the data sets to remove any amino acid substitutions that were observed less than ten times.

We used mode imputation to fill in any missing sequence information. Many of the analyzed data sets consisted of partial

sequencing fragments (either tiled or random) because the entire gene was too long to cover with a paired-end Illumina read. The

remainder of the sequence positions were unobserved. We used mode imputation to replace this missing sequence information.

For nearly all DMS data sets, mode imputation simply replaces unobserved positions with the wild-type amino acid.

We converted protein sequence observations to a designmatrixX using one-hot encoding. Each row of the designmatrixX has the

form in (Equation 9), where the reference amino acid sequence is taken to be the most frequent amino acid at each position (usually

corresponding to the wild-type sequence). The DXS data set consisted of eight recombined gene fragments from one of the four DXS

parent sequences (E. coli, B. subtilis, Z. mobilis, P. trichocarpa). These chimeric DXS sequences can be represented as an ordered

sequence of ‘‘blocks’’ that indicates which parent the gene fragment was inherited from. We chose the E. coli DXS as the reference

and generated dummy variables for each block change from the reference. Each data set resulted in two design matrices corre-

sponding to unlabeled and positive sequences.

PU Model Training
We trained PUmodels on the unlabeled and positive sequence sets for each protein data set. We computed the observed likelihood

(Equation 3) for a given data set ðxi; ziÞni = 1 and a hyperparameter p. We found a stationary point of the negative observed log-likelihood

using a Majorization-Minimization (MM) algorithm (Ortega and Rheinboldt, 1970; Lange et al., 2000). Specifically, starting from an

initial parameter value which corresponds to the null model (no features in the model), we obtained a quadratic majorizer of the nega-

tive log-likelihood function at the current parameter value and updated the current parameter with a minimizer of the quadratic ma-

jorizer function. Since the majorizer function is greater than the negative likelihood at all points, the minimizer decreases the function

value of the negative likelihood compared to the function value evaluated at the current parameter value, i.e. the minimizer increases

the likelihood value. This process was repeated until convergence. For the implementation of this process, we have used the
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PUlassoRpackage from the Comprehensive R Archive Network (CRAN) (Song andRaskutti, 2019), setting the regularization param-

eter l= 0 to fit the un-penalized model.

The hyperparameter pwas either determined experimentally or tuned to maximize the model’s classification performance. For hy-

perparameter tuning, we used twenty log-spaced p values ranging from 10�3 to 0.5. For each p value, we trained a model on 90% of

the data set, used the model to make predictions on the remaining 10%, and generated a receiver operating characteristic (ROC)

curve for the predictions using the labeled/unlabeled response Z. p sets an upper limit on this labeled/unlabeled ROC curve (Fig-

ure S1), and in some instances the observed ROCcurve exceeded this upper limit. These values of pwere determined to be infeasible

because they resulted in true positive rates greater than the oracle classifier. We selected the p value which resulted in the highest

ROC-AUC value among feasible p values.

Aggregating Models from Multiple Replicates
In some instances we had data from multiple replicates that needed to be combined. For example, the Bgl3 high-temp data set had

two experimental replicates (R = 2). We trained models on each individual replicate and then aggregated these results into a single

model with estimated coefficients bqAGG and variance-covariance matrix bVAGG. Let ðbqðiÞ; bV ðiÞÞ be the estimated coefficients and the

variance-covariance matrix of the coefficients from the ith replicate. Here bV ðiÞ
was computed as an inverse of the estimated Fisher

information at bqðiÞ. The aggregated coefficient and variance-covariance matrix were calculated as follows:

bqAGG =
1

R

XR
i = 1

bqðiÞ and bVAGG = cW +

�
1 +

1

R

� bB (Equation 18)

where

cW =
1

R

XR
i = 1

bV ðiÞ
and bB =

1

R� 1

XR
i = 1

�bqðiÞ � bqAGG

��bqðiÞ � bqAGG

�u

:

We note that the aggregated variance matrix bVAGG has two components: cW for the variation in bqðiÞ within each replicate and bB for

the variation across different replicates, i.e. ðbqðiÞÞRi = 1. Thus the form of bVAGG in Equation 18 is a classical variance decomposition with

the extra 1=R factor to account for the finite R (see e.g. Carpenter and Kenward (2013)).

Evaluating and Comparing Model Predictive Ability
We used the area under the receiver operating characteristic curve (ROC-AUC) to evaluate the predictive ability of each model. With

PU data, we don’t have negative examples and therefore we can’t directly calculate a model’s false positive rate (FPR). Instead, we

used the labeled-unlabeled response (Z) to calculate the false positive rate (FPRPU) and true positive rate (TPRPU), and then per-

formed a correction (Jain et al, 2017) to obtain ROC curves and ROC-AUC values:

FPR=
FPRPU � pTPRPU

1� p
and TPR=TPRPU and ROC� AUC=

ROC� AUCPU � p
.
2

1� p
:

This PU ROC curve correction is illustrated in Figure S1.We obtained corrected ROC curves and ROC-AUC values for each of the ten

cross-validation folds, and then averaged over folds to obtain the model’s corrected ROC curve and ROC-AUC value.

We used a corrected repeated cross-validation test to compare the predictive ability between the PU model and site-wise enrich-

ment (Bouckaert and Frank, 2004). This test controls inflated type 1 error caused by data overlaps in cross-validation folds (Dietterich,

1998; Nadeau and Bengio, 2003) and also has high replicability (Bouckaert and Frank, 2004). The test involves running K-fold cross

validation for R independent runs and comparing models using a corrected test statistic. For each run i = 1;.;R, we split the data

randomly into K sub-samples and fit onemodel for each fold j = 1;.;K. We usedR=K = 10 as recommended by the authors (Bouck-

aert and Frank, 2004). Let ROC� AUCðMÞij be the corrected ROC-AUC value for model M from the ith run and jth cross-validation

fold. For the enrichment-based predictions, we used an additive model that summed all individual enrichment scores. We define the

difference between the models dij : =ROC� AUCðPU modelÞij � ROC� AUCðenrichÞij and the standard deviation of this differencebs2 = 1
K,R�1

P
i;j

ðdij � dÞ2. The test statistic t was calculated as follows

t =
1

K,R

P
i;jdijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1
K,R+

1
9

�bs2

s ;

and was compared with the t distribution with K,R� 1 degrees of freedom.

Predictions Using Rosetta, EVmutation, and DeepSequence
We made protein function predictions using established structure-based and unsupervised learning methods including Rosetta,

EVmutation, and DeepSequence (Alford et al, 2017; Hopf et al, 2017; Riesselman et al, 2018). For Rosetta modeling, we searched
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the Protein Data Bank to identify the structure most similar to the DMS data’s reference sequence and used this as a template for

Rosetta comparative modeling using the default options (Song et al, 2013). We sampled 500 random sequences from both the un-

labeled and positive sequence sets, built Rosetta models for these 1000 sequences, and calculated the Rosetta energy for each. We

used these calculated Rosetta energies to create ROC curves classifying unlabeled and positive sets, and corrected these ROC

curves to account for PU data.

We made predictions using EVmutation and DeepSequence models for each protein data set. We created family multiple

sequence alignments (MSAs) using jackhmmer (Wheeler and Eddy, 2013) to query the DMS data set’s reference sequence against

theUniRef90 sequence database (Suzek et al, 2015). For DXS, we chose theE. Coli parent as the jackhmmer reference sequence. For

Rocker, we had to relax the inclusion threshold (jackhmmer domE option set to 10000) to include additional sequences because

Rocker is a de novo designed protein. We filtered the jackhmmer results to remove amino acid insertions relative to the reference

sequence and also removed any resulting sequences that had less than 50% coverage over the reference sequence. We trained EV-

mutation and DeepSequence models on these curated MSAs using the default options. For EVmutation, we scored all sequences in

each data set, except for GB1, where we sampled 106 random sequences and DXS, where we sampled 104 random sequences. For

DeepSequence, we scored 104 random sequences from each data set. We used the EVmutation and DeepSequence scores to

create corrected ROC curves for each data set.

Statistical Hypothesis Testing
We performed hypothesis tests to determine which features ‘‘significantly’’ affect protein function. We calculated the Z statistic zj to

test whether a feature j affects protein function or not (i.e. H0 : qj = 0):

zj : = bq j� ffiffiffiffiffiffibV jj

q
;

where bV is the estimated variance-covariance matrix of bq, computed as the inverse of the estimated Fisher information. We obtained

p-values under the null hypothesis that qj = 0 and computing tail probabilities:

p value for the feature j = 2,PðZR
		zj		Þ;

where Z is a standard normal variable. These p-values were then adjusted using the Benjamini-Hochberg (BH) procedure to account

for multiple hypothesis testing and control the false discovery rate (Benjamini and Hochberg, 1995). We considered a feature to be

significant if its BH-adjusted p-value was less than 0.05.

Evaluating PU Model Stability
We used 10-fold cross-validation to evaluate the stability of the fitted PU model’s parameter estimates and selected features. We

calculated the coefficient of variation for each feature j across different cross-validation folds:

CVj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP10
i = 1

�bqðiÞj � bq j�2.ð10� 1Þ
r

P10
i =1
bqðiÞj .10 (Equation 19)

where bqðiÞj is an estimated coefficient for the jth feature from the ith cross-validation fold. The absolute value of this coefficient of vari-

ation is a measure of a coefficient’s relative variability (Figure 3D).

We evaluated feature selection stability by comparing the set of selected features across different cross-validation folds. We

defined a selection stability measure (SS) as the average fraction of common selected features:

SSk : =
1�
10
2

�X
i<j

		FðiÞ
k XF

ðjÞ
k

		
k

:

where k is the selection size, I and j are different cross-validation folds, and F
ðiÞ
k is the set containing features with the k smallest p-

values from the ith fold. We computed SSk for k = 1;.;K, where K was chosen to be the number of the significant features (BH-

adjusted p<0:05). We then averaged SSk over k to obtain the average feature selection stability SS. A value of SS that approaches

one indicates that many common features are selected across different cross-validation folds (Figure S3D).

Beta-Glucosidase Cloning, Expression, and Characterization
We designed the genes encoding the Bgl3 variants by making codon substitutions into a base Bgl3 gene sequence. If there were

multiple codon options for an amino acid, we chose the particular codon randomly from a set of 31 codons that are optimized for

expression in E coli (Bo€el et al, 2016). We ordered the designed genes as gBlocks from IDT and cloned them into a protein expression

vector (pET22b) using GoldenGate cloning. We verified the sequences of all genes using Sanger sequencing with the T7 promoter

and T7 terminator primers.
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We expressed the Bgl3 variants shaking at 30�C in a 5-mLMagicMedia (Invitrogen) culture overnight. We then pelleted the expres-

sion culture by centrifugation and froze at -20�C. We resuspended the cell pellets in lysis buffer [0.33 BugBuster (Novagen), 30 kU/

mL rLysozyme (Novagen), and 50 U/mL DNase I (New England Biolabs) in 100 mM potassium phosphate, pH 7.2] and performed

serial dilutions to determine the linear range of the enzyme assay. We then diluted all samples in 100 mM potassium phosphate,

pH 7.2 to be within the linear range and have similar end-point activities.

We arrayed the diluted cell extracts into 96-well PCR plates and heated the samples over multiple temperatures (50–75�C) for
15 min using a gradient thermocycler. After the heat step, we quantified the remaining functional enzyme by adding the fluorogenic

substrate 4-methylumbelliferyl-b-D-glucopyranoside (Sigma) to a final concentration of 1 mM. We monitored the reaction progress

by fluorescence spectroscopy (372 nm excitation/445 nm emission), and determined the rate by fitting a linear function to the prog-

ress curves. We normalized all rates to enzyme samples that had been incubated at room temperature (25�C). The T50 (temperature

where 50% of the protein is inactivated in 15 min) was determined by fitting a shifted sigmoid function to the thermal inactivation

curves. All measurements were performed in at least duplicate with the mean T50 values reported.

QUANTIFICATION AND STATISTICAL ANALYSIS

In Figure 2B, the PU model’s Corrected AUC error bars were calculated by taking the standard deviation of AUCs across the ten

cross-validation folds. In Figure 2C, we used a corrected repeated cross-validation test to compare the predictive ability between

the PUmodel and site-wise enrichment (Bouckaert and Frank, 2004). The full details of this test are given in the Methods Details sec-

tion. Statistical significance for PU model coefficients was determined using Benjamini-Hochberg (BH) adjusted p-values (Benjamini

and Hochberg, 1995). We considered a coefficient to be significant if its BH-adjusted p-value was less than 0.05.
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